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Unary Regular Languages

• Unary Language L ⊆ {a}∗.

• Unary DFA

· · ·
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• period(L) = number of states in the cycle of the minimal DFA.

• Cyclic language for k = 0, empty path.

• L cyclic ⇒ period(L) = number of states of the minimal DFA.
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Topics

• Determinism versus probabilism:

– Comparing the number of states.

• Approximating minimal NFA’s:

– Given a unary NFA, how complex is it to determine an equivalent (almost)
minimal NFA?

– Given a unary cyclic DFA, does the possibly exponentially larger input size
allow efficient approximation?
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Unary PFA’s

• Unary PFA M = (Q,A, π, η).

– Q = set of states.
– A = stochastic transition matrix – describes a Markov chain.
– π = initial distribution (stochastic row vector).
– η = vector indicating final states.

• Acceptance probability for input aj: πAjη.

• Cutpoint λ specifies the language L(M,λ) = {aj | πAjη > λ}.

• Cutpoint λ is ε-isolated if ∀j ∈ N0 : |πAjη − λ| ≥ ε.
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Previous Results

Given a PFA, what is the size of the equivalent minimal DFA?

• Fixed isolation for arbitrary alphabets:

Exponential blow up.

• Fixed isolation for unary alphabet:

Exponential blow up for the initial path. (Freivalds, 1982)

• Arbitrarily small isolation for unary alphabet:

Blow up Θ(e
√

n ln n) for the cycle. (Milani and Pighizzini, 2000)
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A tight polynomial bound for the period

a) For any unary PFA M with n states and ε-isolated cutpoint λ

period(L(M,λ)) ≤ n
1
2ε.

Polynomial relationship for fixed ε.

b) Result is almost tight:
For any α < 1 and any ε there is a PFA M with n states and ε-isolated
cutpoint λ, such that

period(L(M,λ)) > nα 1
2ε.
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Finite Markov Chain

• Strong components with no outgoing arc are ergodic components.

• Ergodic component Bi:

di = period of Bi.
ri = absorption probability = prob[Bi is eventually reached].
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Behaviour of a Markov Chain in the Long Run

• For a PFA with individual ergodic periods d1, d2, . . . , dk let
D := lcm {d1, d2, . . . , dk}.

– Size of the PFA ≥
∑

di.
– For large m : πAmη ≈ πAm+Dη.
– period(L) divides D.

Do we need ALL the prime powers dividing D?
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How to leap over the gap?
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• An ergodic component can provide at most its absorption probability.

• Ergodic components can add up their absorption probabilities, if they accept
and reject in a “synchronized manner”: periods have common divisors.

Determinism versus probabilism 8



Leaping Strength of a Prime Power

• Ergodic component Bi:

di = period of Bi.
ri = absorption probability of Bi.

• For a prime power q = pα

leap(q) =
∑

i:q divides di

ri

is the leaping strength of q.
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Proof Sketch:
Only Prime Powers with High Leaping Strength Count

• Call a prime power q weak if leap(q) < 2ε.

• Crucial Step 1:

– A weak prime power cannot divide period(L).
– Hence period(L) divides D := lcm {q | leap(q) ≥ 2ε}.
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Proof Sketch:
D = lcm {q | leap(q) ≥ 2ε} and the Number of States

• Crucial Step 2:

– If q is not weak: q2ε ≤ qleap(q) = q
∑

i:q divides di
ri.

– Consequence: D2ε ≤
∏

dri
i .

– Conclusion:

n ≥
∑

di ≥
∑

ridi ≥
∏

dri
i ≥ D2ε ≥ period(L)2ε.

⇒ period(L) ≤ n
1
2ε
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Computing Minimal NFA’s, Previous Results

For a regular language L let nsize(L) be the size of a minimal NFA accepting L.

• L is specified by a DFA (or NFA):

Determining nsize(L) is PSPACE-hard.

• L is specified by a unary NFA:

Determining nsize(L) is NP -hard.

• L is specified by a unary cyclic DFA:

Determining nsize(L) efficiently implies NP ⊆ DTIME(nO(log n)).

How hard is approximation?
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Approximating Minimal NFA’s

Given a unary cyclic DFA accepting L with n states, an NFA for L with
at most nsize(L) · (1 + lnn) can be efficiently constructed.
This result implies an approximation with factor O(lnn) or

O
(√

nsize(L) · ln nsize(L)
)
.

Shown by reduction to a set cover problem, easy to approximate within ratio
O(lnn).

Given a unary NFA N with s states, it is impossible to efficiently

approximate nsize(L(N)) within a factor of
√

s
ln s unless P = NP .

Moreover, every approximation algorithm with approximation factor bounded by
a function with nsize(L) as its only argument solves an NP-hard problem.
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NP Hardness of the Universe Problem for NFA’s

Result of Stockmeyer and Meyer (1973):

For a given unary NFA N , it is NP -hard to decide, if L(N) 6= a∗.

• Given an instance Φ of the 3SAT problem, construct a unary NFA NΦ that
accepts a∗, iff Φ is not satisfiable.

• We put this into an approximation framework:

• Reduction is gap producing!

– Φ 6∈ 3SAT ⇒ L := L(NΦ) = a∗ and thus nsize(L) = 1.
– Φ ∈ 3SAT ⇒ nsize(L) = Ω(n2 lnn) for Φ defined over n variables.
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Conclusions

• Approximating minimal NFA’s:

– NP -hard to approximate within
√

s
ln s if the language is represented by an

s-state unary NFA.
– Factor (1 + lnn) is possible if the language is represented by an n-state

unary cyclic DFA.

• Determinism versus probabilism with fixed isolation:

– Short-term behaviour (length of the initial path) with exponential blow up,
but

– long-term behaviour (length of the cycle) with only polynomial blow up.
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