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Abstract. We investigate unary regular languages and compare deterministic finite au-
tomata (DFA’s), nondeterministic finite automata (NFA’s) and probabilistic finite automata
(PFA’s) with respect to their size.
Given a unary PFA with n states and an ε-isolated cutpoint, we show that the minimal

equivalent DFA has at most n
1
2ε states in its cycle. This result is almost optimal, since for

any α < 1 a family of PFA’s can be constructed such that every equivalent DFA has at least
n

α
2ε states. Thus we show that for the model of probabilistic automata with a constant error

bound, there is only a polynomial blowup for cyclic languages.
Given a unary NFA with n states, we show that efficiently approximating the size of a
minimal equivalent NFA within the factor

√
n

ln n
is impossible unless P = NP . This result

even holds under the promise that the accepted language is cyclic. On the other hand we
show that we can approximate a minimal NFA within the factor ln n, if we are given a cyclic
unary n-state DFA.

1 Introduction

Regular languages and finite state automata as their acceptance devices, are well studied objects.
We consider DFA’s, NFA’s and PFA’s with isolated cutpoint and compare their sizes.

For an n-state PFA with ε-isolated cutpoint, the equivalent DFA needs at most (1 + 1
2ε )

n−1

states [10]. For a unary alphabet, Milani and Pighizzini [9] show the tight bound1 of eΘ(
√

n ln n) for
the number of states in the cycle of the minimal DFA. This result does not depend on the size of
the isolation ε and the proof of the lower bound actually relies on an isolation that tends to zero.
We show that the isolation ε plays a crucial role, namely that L can be accepted by a DFA with at
most n

1
2ε states in its cycle. Thus, for constant isolation ε, we improve the upper bound of Milani

and Pighizzini to be a polynomial in n.
The minimization problem for DFA’s can be efficiently solved. But for a given DFA, the problem

of determining the minimal number of states of an equivalent NFA is PSPACE-complete [6].
A result of Stockmeyer and Meyer [11] shows that the problem of minimizing a given NFA is
PSPACE-complete for a binary alphabet and NP -complete for a unary alphabet.

We show that, given an n-state NFA accepting L, it is impossible to efficiently approximate the
number of states of a minimal NFA accepting L within a factor of

√
n

ln n unless P = NP . This result
holds even under the promise that L is a unary cyclic language and can be extended to PFA’s
with isolated cutpoint. On the other hand we show that if we are given a unary cyclic n-state DFA
accepting L, then we can efficiently construct an equivalent NFA with at most k · (1 + lnn) states,
where k is the number of states of a minimal NFA accepting L. This contrasts with a result of
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1 The bound of Θ(e

√
n ln n) stated in the article had to be corrected, due to [2].



Jiang et al. [5] who show that the number of states of a minimal NFA, equivalent to a given unary
DFA, cannot be computed in polynomial time, unless NP ⊆ DTIME(nO(ln n)). This result even
holds, if we restrict the DFA to accept only cyclic languages.

The next section gives a short introduction into unary NFA’s and unary PFA’s. Unary PFA’s
with ε-isolated cutpoint, resp. unary NFA’s, are investigated in sections 3 and 4 respectively.

2 Preliminaries

We consider unary languages L ⊆ {a}∗. A unary regular language is recognized by a DFA that
starts with a possibly empty path and ends in a non-empty cycle.

A language L is ultimately d-cyclic, if there is a µ ∈ IN0, so that (aj ∈ L ⇔ aj+d ∈ L) holds
for any j ≥ µ and we say that d is an ultimate period of L. A smallest ultimate period is called
the minimal ultimate period c(L) and any ultimate period is a multiple of the minimal ultimate
period. L is called cyclic, if the path of the minimal DFA for L is empty. For cyclic languages we
use the term period instead of ultimate period and d-cyclic (resp. minimally d-cyclic) instead of
ultimately d-cyclic (resp. minimally utimately d-cyclic).

The size of an automaton A is the number of states of A. For a given regular language L, we
use nsize(L) as the minimal size of an NFA accepting L.

A normal form for unary NFA’s is established by Chrobak in [1]. His construction converts
a given NFA N with n states into an equivalent NFA N ′ consisting of a deterministic path and
several deterministic cycles. Only the last state of the path branches nondeterministically into one
state of each cycle. The path of N ′ has length O(n2), and the number of all states in the cycles
is bounded by n. Chrobak proves, that L(N ′) is ultimately d-cyclic, where d is the least common
multiple of the length of the cycles in N ′. For cyclic languages we introduce union automata as
automata in Chrobak normal form with an empty path.

Definition 1. A union automaton U is described by a collection (A1, . . . , Ak) of cyclic DFA’s. U

accepts an input w iff there is an Ai, such that Ai accepts w. The size of U is defined as
∑k

i=1 si,
where si is the number of states of Ai.

To convert a union automaton U into an NFA with a single inital state, we simply add one state q0

and transitions from q0 to each state that succeeds an initial state of the deterministic automata
that U consists of.

Jiang, McDowell and Ravikumar [5] show a structural result about minimal unary NFA’s ac-
cepting cyclic languages.

Fact 1. [5] Let L be a minimally D-cyclic unary language.
Every minimal NFA accepting L can be obtained by converting some minimal union automaton

U accepting L into an NFA. Moreover D is the least common multiple of the cycle lengths of U .
Consider the prime factorization of D = pα1

1 · . . . · pαr
r , where the pi are distinct and αi ∈ IN,

then every NFA accepting L has at least pα1
1 + . . . + pαr

r states.

This result offers some clues about the composition of the (ultimate) period of a unary language
which also apply to probabilistic finite automata which we define as follows. A unary PFA M with a
set Q of n states is described by a stochastic n×n matrix A, a stochastic row vector π representing
the initial distribution, and a column vector η ∈ {0, 1}n indicating the final states. Observe that
πAjη is the acceptance probability for input aj . The language accepted by M with respect to a
cutpoint λ ∈ [0, 1] is L(M,λ) = {aj |πAjη > λ}. We call cutpoint λ ε-isolated, if for any j ∈ IN0:
|πAjη − λ| ≥ ε. We call a cutpoint isolated, if there is an ε > 0, so that it is ε-isolated.

We regard A as the stochastic matrix of a finite Markov chain M, with rows and columns
indexed by states, and consider the representation of M as a directed graph GA = (V,E) with
V = Q. An arc from state q to state p exists in GA, if Ap,q > 0. We call a strongly connected
component B ⊆ Q in GA ergodic2, if starting in any state q ∈ B, we cannot reach any state outside
of B. States within an ergodic component are called ergodic states, non-ergodic states are called
transient. For an ergodic component B, the period of q ∈ B is defined as
2 Unlike some authors we do not require an ergodic component to be aperiodic.



dq = gcd{j| starting in q one can reach q with exactly j steps}.

All states q ∈ B have the same period d = dq, which we call the period of B.
Factorization and primality play an important role for (ultimate) periods. To estimate the size

of the i-th prime number we use the following fact.

Fact 2. [4] If pi is the i-th prime number, then i ln i ≤ pi ≤ 2i ln i for i ≥ 3.

3 Unary PFA’s with ε-Isolated Cutpoint

In [9] Milani and Pighizzini show, that the ergodic components of a unary PFA with isolated
cutpoint basically play the same role as the cycles of an NFA in Chrobak normal form. The least
common multiple D of the periods of these components is an ultimate period of the language
L(M,λ) accepted by the PFA.

This result does not take the isolation into account and yields an exponential upper bound for
the ultimate period, namely c(L(M,λ)) = eO(

√
n ln n) where n is the number of states in the PFA.

We show that the ultimate period c(L(M,λ)) decreases significantly with increasing isolation and
this results in a polynomial upper bound for c(L(M,λ)), if ε is a constant.

As a first step, Lemma 1 shows that the period di of an ergodic component Bi with absorption
probability ri < 2ε, where

ri := lim
t→∞

∑
p∈Bi

(πAt)p = prob(a random walk is eventually absorbed into Bi),

does not play a role for c(L(M,λ)), neither do periods of collections of ergodic components with
small combined absorption probability.

Lemma 1. Let B1, . . . , Bm be the ergodic components of a Markov chain with periods di and
absorption probabilities ri, respectively. If the corresponding PFA M accepts L := L(M,λ) with
ε-isolated cutpoint, then for any I ⊆ {1, . . . ,m} with

∑
i∈I ri > 1 − 2ε, D(I) := lcm{di|i ∈ I} is

an ultimate period of L and thus is a multiple of c(L).

Proof (Sketch). For an ultimate period D of L the limit A∞ := limt→∞(AD)t exists, where we
require convergence in each entry of the matrix. This can be shown by bringing the matrix A into a
normal form (see Gantmacher [3]), so that the stochastic submatrix Ai for each ergodic component
Bi forms a block within A. If Bi has period di, then limt→∞(Adi

i )t exists. Since D is a multiple of
every di, the limit of (AD)t exists. As a consequence from [9] and from the existence of this limit,
for every δ there must be a µδ ∈ IN, such that for every j ≥ µδ, aj ∈ L ⇔ aj+D ∈ L and∑

q∈Q

|(πAj)q − (πA(j mod D)A∞)q| < δ.

Let I ⊆ {1, . . . ,m} be a set of indices with
∑

i∈I ri > 1 − 2ε. Assume that D(I) is not an
ultimate period of L. Then there is some j > µδ with aj ∈ L and aj+D(I) 6∈ L. So πAjη ≥ λ + ε
and πAj+D(I)η ≤ λ− ε, and thus π

(
Aj −Aj+D(I)

)
η ≥ 2ε. Let (x)+ = x if x > 0, and let (x)+ = 0

otherwise. Remember, that η ∈ {0, 1}n. Then we have with QI :=
⋃

i∈I Bi ∪ {q|q transient}

2ε ≤
∑
q∈Q

(π(Aj −Aj+D(I)))q

≤
∑

q∈QI

(π(Aj −Aj+D(I)))+q +
∑

q 6∈QI

(π(Aj −Aj+D(I)))+q . (1)

The proof of the existence of A∞ also shows that if we restrict the matrix A to all the states
in QI and call the resulting substochastic matrix AI , then the limit limt→∞(AD(I)

I )t exists as well.
And so, for δ = 2ε−

∑
i 6∈I ri and for any j ≥ µδ, we get∑

q∈QI

(π(Aj −Aj+D(I)))+q < δ. (2)



But on the other hand, for any j ≥ 0∑
q 6∈QI

(π(Aj −Aj+D(I)))+q ≤
∑

q 6∈QI

(πAj)q ≤
∑
i 6∈I

ri = 2ε− δ. (3)

The second inequality follows, since the absorption probability is the limit of a monotonically
increasing sequence. So we have reached a contradiction, since the sum of (3) and (2) does not
satisfy (1). ut

We can now exclude some prime powers as potential divisors of c(L(M,λ)).

Definition 2. Let M be a PFA with ergodic periods di and absorption probabilities ri. We call a
prime power q = ps ε-essential (for M), if∑

i: q divides di

ri ≥ 2ε and
∑

i: q·p divides di

ri < 2ε.

Lemma 2. If λ is ε-isolated for a PFA M , then

D =
∏

q is ε−essential

q.

is an ultimate period of L = L(M,λ). Hence D is a multiple of c(L).

Proof. Assume that c(L) is a multiple of a prime power pk which does not divide any ε-essential
prime power. Let J = {i|pk divides di}, and let I = {1, . . . ,m} \ J be the complement of J . Then
pk does not divide any di with i ∈ I and thus pk does not divide D(I) = lcm{di|i ∈ I}.Since pk

does not divide any ε-essential prime power, we have that
∑

i∈J ri < 2ε, and so
∑

i∈I ri > 1− 2ε.
According to Lemma 1, D(I) is a multiple of c(L). But on the other hand D(I) is not a multiple
of pk. This is a contradiction, since pk was assumed to divide c(L). ut

Now we show the tight upper bound for the minimal ultimate period of a language accepted
by an ε-isolated PFA.

Theorem 1. a) For any unary PFA M with n states and ε-isolated cutpoint λ

c(L(M,λ)) ≤ n
1
2ε .

b) For any 0 ≤ α < 1 and any ε = 1
2m with m ∈ IN, there is a PFA M with n states and ε-isolated

cutpoint λ, such that c(L(M,λ)) > n
α
2ε .

Proof. a) Let M have m ergodic components with periods d1, . . . , dm. Set D :=
∏

q is ε−essential q
and remember, that

∑
i: q divides di

ri ≥ 2ε for any ε-essential q, then

D2ε =
∏

q is ε−essential

q2ε ≤
∏

q is ε−essential

q

∑
i: q divides di

ri

=
m∏

i=1

∏
q is ε−essential,

q divides di

qri ≤
m∏

i=1

dri
i .

Now, since
∑m

i=1 ri = 1, the weighted arithmetic mean is at least as large as the geometric
mean, and thus

m∑
i=1

ridi ≥
m∏

i=1

dri
i .

Since D ≥ c(L(M,λ)) with Lemma 2, we obtain

n ≥
m∑

i=1

di ≥
m∑

i=1

ridi ≥
m∏

i=1

dri
i ≥ D2ε ≥ c(L(M,λ))2ε.



And the claim follows.
b) Let p1, p2, . . . be the sequence of prime numbers. We define the languages

Lk,m =

{
aj

∣∣∣∣∣j ≡ 0

(
mod

k+m−1∏
i=k

pi

)}

for k, m ≥ 1. Obviously c(Lk,m) =
∏k+m−1

i=k pi ≥ pm
k ≥ (k ln k)m.

On the other hand Lk,m can be accepted by a PFA with isolation ε = 1
2m and cutpoint λ = 1−

1
2m as follows. We define a “union automaton with an initial distribution” by setting up m disjoint
cycles of length pk, pk+1, . . . , pk+m−1, respectively. The transition probability from one state to the
next in a cycle is 1. There is exactly one final state in each cycle and the initial distribution places
probability 1

m on each final state. For every word az ∈ Lk,m we have z ≡ 0(mod pi) for every
k ≤ i ≤ k + m− 1 and for every word az 6∈ Lk,m there is at least one i with z 6≡ 0(mod pi). Thus a
word is either accepted with probability 1, or it can reach acceptance probability at most 1− 1

m .
Applying Fact 2, the number of states in the PFA is

nk,m =
k+m−1∑

i=k

pi ≤ 2
k+m−1∑

i=k

i ln i ≤ 2
∫ k+m

k

x lnx dx

= 2
[
x2

2
lnx− x2

4

]x=k+m

x=k

≤ (k2 + 2km + m2) ln(k + m)− k2 ln k

= k2 ln
(
1 +

m

k

)
+ (2km + m2) ln(k + m).

But since k ln
(
1 + m

k

)
= ln

(
1 + m

k

)k ≤ ln em = m,

nk,m ≤ km + (2km + m2) ln(k + m) ≤ (3km + m2) ln(k + m).

Thus for any 0 ≤ α < 1, any constant m = 1
2ε and a sufficiently large k, we have

c(Lk,m) ≥ (k ln k)m > ((3km + m2) ln(k + m))αm ≥ n
α
2ε

k,m,

and the claim follows. ut

Our result shows that for a fixed isolation ε, the ultimate period of the language accepted by
the PFA M with n states is only polynomial in n.

4 Approximating the Size of a Minimal NFA

Stockmeyer and Meyer [11] show, that the universe problem L(N) 6= Σ∗ is NP -complete for regular
expressions and NFA’s N , even if we consider only unary languages. Since our argument is based
on their construction, we show the proof.

Fact 3. [11] For a unary NFA N , it is NP -hard to decide, if L(N) 6= {a}∗.

Proof. We reduce 3SAT to the universe problem for unary NFA’s. Let Φ be a 3CNF-formula over
n variables with m clauses. Let p1, . . . , pn be the first n primes and set D :=

∏n
i=1 pi. According to

the chinese remainder theorem, the function µ : IN0 → INn
0 with µ(x) = (x mod p1, . . . , x mod pn)

is injective, if we restrict the domain to {0, . . . , D − 1}. We call x a code (for an assignment), if
µ(x) ∈ {0, 1}n.

We construct a union automaton NΦ that accepts {a}∗ iff Φ is not satisfiable. We first make
sure, that L0,Φ = {ak|k is not a code} is accepted. Therefore, for every prime pi (pi > 2) we
construct a cycle that accepts the words aj with j 6≡ 0(mod pi) ∧ j 6≡ 1(mod pi). So there are
2 non-final states and (pi − 2) final states in the cycle. For every clause C of Φ with variables
xi1 , xi2 , xi3 we construct a cycle C∗ of length pi1pi2pi3 . C∗ will accept

{ak| the assignment k mod pij
for xij

(j = 1, 2, 3) does not satisfy C}.



Since the falsifying assignment is unique for the three variables in question, exactly one state is
accepting in C∗.

The construction can be done in time polynomial in the length of Φ. If there is a word aj 6∈
L(NΦ), then j is a code for a satisfying assignment. On the other hand every satisfying assignment
has a code j and aj is not accepted by NΦ. ut

We set LΦ = L(NΦ) for the automaton NΦ constructed above. Observe that LΦ is a union of
cyclic languages and hence itself cyclic. Obviously if Φ 6∈ 3SAT , then the minimal NFA for LΦ

has size 1. We will show, that for Φ ∈ 3SAT every NFA accepting LΦ must have at least
∑n

i=2 pi

states, which implies Theorem 2.

Theorem 2. Given an NFA Nwith nstates, it is impossible to efficiently approximate nsize(L(N))
within a factor of

√
n

ln n unless P = NP .

We first determine a lower bound for the period of LΦ.

Lemma 3. For any given 3CNF-formula Φ ∈ 3SAT the minimal period of LΦ is either D :=∏n
i=2 pi or 2D.

Proof. LΦ is 2D-cyclic, since 2D is the least common multiple of the cycle lengths of NΦ. Assume
that neither D nor 2D is the minimal period of LΦ. Then there is i ≥ 2, such that d = D

pi
is a

period of LΦ. We know that aqpi+2 ∈ L0,Φ for every q ∈ IN, because qpi + 2 does not represent a
code. Since L0,Φ ⊆ LΦ and we assume that LΦ is d-cyclic, aqpi+2+rd belongs to LΦ for every r ∈ IN
as well.

On the other hand, since LΦ 6= {a}∗, there is an al 6∈ LΦ, and so al+td 6∈ LΦ for every t ∈ IN.
It is a contradiction, if we find q, r, t ∈ IN0, so that qpi + 2 + rd = l + td, since the corresponding
word has to be in LΦ because of the left-hand side of the equation and cannot be in LΦ because of
the right-hand side.

∃q, r, t : qpi + 2 + rd = l + td ⇔ ∃q, r, t : qpi = l − 2 + (t− r)d
⇔ ∃q : qpi ≡ l − 2 (mod d)
⇔ ∃q : q ≡ (l − 2)p−1

i (mod d)

The multiplicative inverse of pi modulo d exists, since gcd(pi, d) = 1, and we have obtained the
desired contradiction. ut

We will need a linear relation between the number of clauses and variables in the CNF-formula.

Fact 4. Let E3SAT −E5 be the satisfiability problem for formulae with exactly 3 literals in every
clause and every variable appearing in exactly 5 distinct clauses, then E3SAT−E5 is NP -complete.

The following Lemma determines a lower bound for the size of an NFA equivalent to NΦ, if Φ
is satisfiable.

Lemma 4. Let Φ ∈ E3SAT −E5 and assume that Φ consists of m clauses. Then nsize(L(NΦ)) ≥
cm2 lnm for some constant c.

Proof. We know from Lemma 3, that L(NΦ) is either minimally D-cyclic or 2D-cyclic with D =∏n
i=2 pi where n is the number of variables in Φ. Applying Fact 1 the size of a minimal NFA

accepting LΦ is at least
∑n

i=2 pi. We observe that

n∑
i=2

pi ≥
n∑

i=1

i ln i ≥
∫ n

1

x lnx dx ≥ n2

4
lnn

We have 5n = 3m and thus nsize(LΦ) ≥ cm2 lnm for some constant c. ut

Finally we determine an upper bound for the size of the NFA NΦ.

Lemma 5. Let Φ be a 3CNF formula with m clauses and exactly 5 appearances of every variable.
Then the NFA NΦ has size at most O

(
m4(lnm)3

)
and at least Ω

(
m2 lnm

)
.



Proof. The number of states in a cycle for a clause is a product of three primes. So there are
at most m · p3

n = O(m (m lnm)3) states in all of these cycles. The cycles recognizing L0,Φ have∑n
i=2 pi = Θ(n2 lnn) states, where n is the number of variables of Φ. Since n = Θ(m) the claim

follows. ut

Proof (of Theorem 2). Assume that the polynomial time deterministic algorithm A approximates
nsize(L(N)) within the factor

√
s

ln s for an NFA N with s states. We show that the satisfiablity
problem can be decided in polynomial time.

Let Φ be the given input for the E3SAT −E5 problem, where we assume that Φ has n variables
and m clauses. We construct the NFA NΦ as in fact 3. If Φ is not satisfiable, then nsize(LΦ) = 1,
and according to Lemma 5 the algorithm A claims that an equivalent NFA with at most

√
s

ln s
=

√
(O(m4(lnm)3))

ln(Ω(m2(lnm)))
= o(m2 lnm)

states exists. Since
∑n

i=2 pi = Θ(m2 lnm), the claimed number of states is asymptotically smaller
than nsize(LΨ ) for any satisfiable formula Ψ with the same number of clauses as Φ. Hence with
the help of A, we can decide if Φ is satisfiable within polynomial time. ut

Remark 1. For every 0 < ε ≤ 1 the same construction as in the proof of Theorem 2 can be used to
show that it is not possible to approximate the size of a minimal PFA with isolation ε equivalent
to a given n-state PFA with isolation c · n− 1

4 within the factor
√

n
ln n .

For a given formula Φ with m clauses we construct the PFA MΦ with m cycles3 and uniform
initial distribution for the initial states of each cycle. We define the cutpoint as λ = 1

2m . Hence a
word is accepted by MΦ iff it is accepted by at least one cycle. Thus the cutpoint λ is δ-isolated
with δ = 1

2m ≥ c · n− 1
4 for some appropriate c, and MΦ behaves like a union automaton. Since

L(MΦ, λ) is the same language as considered before, it is 1-cyclic if Φ is not satisfiable and has
period D =

∏m
i=2 pi or 2D if Φ is satisfiable. Every PFA with isolated cutpoint that accepts a

language with period
∏m

i=2 pi has at least
∑m

i=2 pi states [8], independent of the actual isolation.

The approximation complexity changes if a unary cyclic language is specified by a DFA M ,
although the decision problem, namely to decide whether there is a k-state NFA accepting the
cyclic language L(M), is not efficiently solvable unless NP ⊆ DTIME(nO(ln n)) [5].

Theorem 3. Given a unary cyclic DFA accepting L with D states, an NFA for L with at most
nsize(L) · (1+ lnD) states can be computed in polynomial time. Observe that nsize(L) · (1+ lnD) =
O
(
nsize(L)

3
2
√

ln nsize(L)
)
.

Proof. We reduce the optimization problem for a given cyclic DFA M to an instance of the weighted
set cover problem. We can assume M to be a minimal cyclic D-state DFA with the set of states
Q = {0, . . . , D− 1}, 0 as the initial state, and final states F ⊆ Q. Then L(M) = {aj+kD|j ∈ F, k ∈
IN0}.

For every dl that divides D we construct a deterministic cycle Cl with period dl. The union
automaton consisting of these cycles will accept L(M), if we choose the final states of Cl as follows:
For each aj ∈ L with 0 ≤ j < dl, we let Cl accept aj , iff aj+k·dl ∈ L(M) for any 0 ≤ k < D

dl
.

Remember, that we don’t have to check for ax with x ≥ D, since L(M) is D-cyclic and dl divides
D.

At this stage the union automaton will have a lot of unnecessary cycles. Therefore we define
an instance of the set cover problem, where we introduce a set

Tl := {j|0 ≤ j < D, aj is accepted by Cl}

of weight wl := dl for every cycle Cl. The universe is {j|0 ≤ j < D, aj ∈ L(M)}. The instance can
be constructed in polynomial time, since the number of divisors of D is less than D and thus the
set cover problem consists of at most D sets with at most D elements.
3 To check the validity of a code we can also use the clause cycles.



If N is a minimal NFA accepting L(M), then we know from Fact 1 that N is a union automaton
(with an additional initial state) that consists of cycles with periods that divide D. Every cycle C∗

of N corresponds to a set Tl and the accepted words of C∗ up to length D− 1 are contained in Tl.
So a minimal union automaton with n states can be expressed by a set cover of weight n. On

the other hand, every set cover can be considered to be a union automaton. Thus a minimal set
cover corresponds to a minimal NFA.

The greedy algorithm for the weighted set cover problem approximates the optimal set cover
within the factor H(k) =

∑k
i=1

1
k ≤ 1 + ln k, where k is the size of the largest set [7]. For an

n-state NFA N Chrobak [2] bounds the size of c(L(N)) by the Landau function and receives
D = eO(

√
n ln n). ut

5 Conclusions and Open Problems

In Theorem 1 we have shown that PFA’s with constant isolation lead to only polynomially smaller
automata in comparison to cyclic unary DFA’s. It is not hard to observe that PFA’s with constant
isolation are negatively exponentially smaller than DFA’s for non-cyclic unary languages. The size
relation between minimal PFA’s and minimal DFA’s for non-cyclic unary languages is to be further
explored.

The hardness result of Theorem 2 for minimizing unary NFA’s is tight within a square, since
size

√
n

ln n is excluded for a given NFA of size n. Is Theorem 2 “essentially” optimal?
Jiang and Ravikumar [6] state the open problem of approximating a minimal NFA given a

DFA. Specifically to determine the complexity of designing an NFA accepting L(M) with at most
nsize(L(M))k states for a given DFA M and a given k. We have answered the question for the case
of unary cyclic DFA’s and k > 3

2 in Theorem 3.
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