
Learning Unary Automata∗

Presented at the Seventh Workshop on Descriptional Complexity of Formal Systems

DCFS, Como, Italy, June 30 - July 2, 2005

Gregor Gramlich†

gramlich@thi.informatik.uni-frankfurt.de

Ralf Herrmann

ralf.herrmann@internet.de

Institut für Informatik

Johann Wolfgang Goethe–Universität Frankfurt

Robert-Mayer-Straße 11-15

60054 Frankfurt am Main, Germany

Abstract

We determine the complexity of learning problems for unary regular languages.
We begin by investigating the minimum consistent dfa (resp. nfa) problem which is
known not to be approximable within any polynomial, unless P = NP . For the case
of unary dfa’s, we exhibit an efficient algorithm. On the other hand, we show the
intractability of the unary minimum consistent nfa problem but provide an efficient
quadratic approximation for its optimization version.

The VC dimension for the class of languages accepted by unary dfa’s with at most
n states is computed as n + log n ± Θ(log log n), which (together with the efficient
solution for the consistency problem) yields an efficient PAC learning algorithm for
this class. We also show that there are no efficient PAC learning algorithms for the
class of languages accepted by unary nfa’s with at most n states, unless every problem
in NP is solvable by a quasipolynomial time Monte-Carlo algorithm. Here we assume
that nfa’s with few states serve as hypotheses.

In the context of learning with equivalence queries, we consider the number of
counterexamples required to learn a unary regular language that is accepted by a dfa
with at most n states. When submitting dfa’s with at most nd states (d ≤ n) as

queries, we show the upper bound O(n
2

d
) and the lower bound Ω(n

2
·ln d

d·(lnn)2). If only

prime cycle lengths ≤ n are allowed as queries, we prove that Θ(n
2

ln n
) counterxamples

are necessary and sufficient.

1 Introduction

We investigate the learnability of unary regular languages, i.e. regular languages defined
over the alphabet Σ = {a}. In particular we consider PAC learning [7], where an unknown

∗partially supported by DFG project SCHN503/2-1.
†Corresponding author

1

concept has to be learned probably approximately correctly from randomly generated
positive and negative examples, and learning with equivalence queries, where the learning
algorithm submits an hypothesis and the teacher either confirms its correctness or replies
with a counterexample.

A unary deterministic finite automaton (dfa) has a simple structure: it consists of
a possibly empty initial path followed by a cycle. Chrobak [2] shows that every unary
nondeterministic finite automaton (nfa) with n states can be brought into the following
normal form. The resulting nfa has an initial deterministic path with at most n2+n states
and the last state of the path leads to several deterministic cycles which have a total of at
most n states. So every computation of an nfa in Chrobak normal form on an arbitrary
word takes at most one nondeterministic step.

These simple structures raise the hope that learning unary dfa’s or nfa’s in the frame-
work of algorithmic learning theory is easier to accomplish than for non-unary languages.

In the minimum consistent dfa (resp. nfa) problem positive and negative examples
(words) are given and the size of a minimum dfa (resp. nfa) that accepts all positive
examples and rejects all negative examples is to be computed. Already the minimum
consistent dfa problem does not allow any reasonable approximation whatsoever [8, 4].
However the minimum consistent dfa problem, restricted to unary examples, is efficiently
solvable (see Theorem 1) and we can also efficiently compute an nfa with O(opt2) states,
provided consistent nfa’s with opt states exist (see Theorem 3). We show in Theorem 2
that efficient exact algorithms for the unary minimum consistent nfa problem do not exist,
unless NP ⊆ DTIME(nO(log n)). Theorem 2 also implies that languages, represented by
unary nfa’s, are not efficiently PAC learnable with small nfa’s as hypotheses, unless every
problem in NP has a quasipolynomial time Monte-Carlo algorithm (see Corollary 2).

The Vapnik-Chervonenkis (VC) dimension plays a crucial role when determining the
number of examples for successful PAC learning algorithms. In Theorem 4 we determine
the VC dimension of the class of unary languages accepted by dfa’s with at most n states
to be n+log n±Θ(log log n). We conclude in Corollary 1 that the class of unary dfa’s with
at most n states is efficiently PAC learnable. Corollary 2 shows that the class of unary
nfa’s with at most n states is efficiently PAC learnable with hypotheses of quadratic size.

The major goal in the model of learning with equivalence queries is to submit as few
hypotheses as possible, thus minimizing the number of required counterexamples. We
consider cyclic dfa’s with p states, where p ≤ n is some prime number. If we only allow
dfa’s as hypotheses with q ≤ n states for some prime number q, then we show in Theorem
5 that Θ(n2

lnn) counterexamples are necessary and sufficient. On the other hand Theorem
6 shows that if we allow to submit dfa’s with nd states (d ≤ n), then there is a learning

algorithm that only needs O(n2

d) counterexamples and there are cases, where Ω(n2·ln d
d·(ln n)2)

counterexamples are necessary.
The paper is organized as follows: Section 2 describes the complexity of the problems of

minimum consistent dfa’s and nfa’s in the unary case. We calculate the VC dimension for
unary dfa’s and apply the results to the model of PAC learning in Section 3 and determine
the number of counterexamples required to learn unary cyclic dfa’s in the model of learning
with equivalence queries in Section 4. We compare results for PAC learning and learning
with equivalence queries in the unary case with results for the general case in Section 5.

2

2 Unary minimum consistent Automata

We first need some more insight into the structure of unary regular languages and introduce
some terms.

Since a unary regular language L ⊆ {a}∗ is described by a dfa, we derive notions of
periodicity of L from the structure of a dfa accepting L. If a dfa accepts L with z states
in its cycle, we say that L is ultimately z-cyclic or has ultimate period z. Algebraicly this
means that for all words am, an with m ≡ n (mod z) and m,n sufficiently large (greater
than the path length of the dfa), am ∈ L ⇔ an ∈ L holds. If z is the number of states
in the cycle of the minimal dfa accepting L, we say that L has the minimal ultimate
period z. Every ultimate period is a multiple of the minimal ultimate period. If L can be
accepted by a (minimal) dfa with z states that consists of a cycle only, then we say that
L is (minimally) z-cyclic or that L has (minimal) period z.

If L is accepted by an nfa in Chrobak normal form with cycle lengths c1, . . . , cm, then
the least common multiple lcm(c1, . . . , cm) is an ultimate period of L.

In this section, we assume that P (resp. N) denotes a set of positive (resp. negative)
examples. We say that an automaton A is consistent with (P,N), if P ⊆ L(A) and
N ∩ L(A) = ∅, where L(A) denotes the language accepted by the automaton A.

For unary consistency problems, we assume that P,N ⊆ {a}∗. In a realistic setting
an example w ∈ P ∪ N is represented concisely by denoting its length |w| with roughly
log |w| bits. Thus the input length for our minimum consistent automata problems is
about `(P,N) =

∑

w∈P∪N log |w| which is at least |P | + |N | for non-trivial example sets.
In the (general) minimum consistent dfa problem, we have to determine the minimum

size of a dfa which is consistent with given P and N . This problem is known to be NP -
complete and any reasonable approximation is intractable[8, 4]. We present an efficient
constructive algorithm for the unary minimum consistent dfa problem.

For an input word w of sufficient length, we know that the residue of |w| modulo the
cycle length of the dfa determines whether the word is accepted or rejected. The following
definition partitions the words due to their residues modulo a period z and the definition
of λ allows us to describe the longest word in a set.

Definition 1. For a finite set S ⊆ {a}∗, let Sr,z = {w : w ∈ S ∧ |w| ≡ r mod z} be the
residue subset for residue 0 ≤ r < z and let λ(S) = max{|w| : w ∈ S}, resp. λ(∅) = −1.

If we require a certain cycle length z, then it is easy to describe the size of a minimum
consistent dfa with cycle length z.

Lemma 1. The size of a minimum dfa with fixed given cycle length z ∈ N that is consistent
with the sets P,N ⊆ {a}∗ is

sz(P,N) := z + 1 + max {min{λ(Pr,z), λ(Nr,z)} : 0 ≤ r < z} .

Proof. We first prove that for every fixed 0 ≤ r < z a minimum dfa with cycle length z
consistent with Pr,z, Nr,z needs exactly 1 + min{λ(Pr,z), λ(Nr,z)} states in its path (and
z states in its cycle). If one of the sets Pr,z, Nr,z is empty, then a minimum dfa is just a
cycle of length z with empty path, so w.l.o.g. we assume that 0 ≤ λ(Pr,z) < λ(Nr,z) and
for the sake of contradiction suppose that the path had less states than 1 + λ(Pr,z). Then

3

the longest examples wP ∈ Pr,z and wN ∈ Nr,z both reach the cycle and end up in the
same state. So either both wP and wN have to be accepted, or both have to be rejected.

On the other hand 1+λ(Pr,z) states in the path are enough, since no positive example
reaches the cycle, and thus final and non-final states can be chosen consistently.

A dfa consistent with (P,N) has to be consistent with all residue subsets and thus
needs the longest path computed for some residue r. Moreover the minimum dfa consistent
with (P,N) does not need more than the described maximum, since the residue subsets
are pairwise disjoint and lead to pairwise disjoint sets of reachable states in a dfa with
1+max {min{λ(Pr,z), λ(Nr,z)} : 0 ≤ r < z} states in its path and z states in its cycle.

We conclude that the size of a minimum consistent dfa can be described easily and
show that this size cannot grow exponentially in the input size `(P,N).

Lemma 2. The size of a minimum dfa consistent with (P,N) – denoted s(P,N) – is
min{sz(P,N) : z ∈ N} and s(P,N) < `3 holds for input length ` = `(P,N) large enough.

Proof. The first claim is obvious. To prove the second claim, we set n := s(P,N) and
observe that for every cycle length z < n, a consistent dfa must have a non-empty path
(otherwise z < n states were sufficient), thus

∀z < n ∃(ax, ay) ∈ P × N : x ≡ y mod z.

For reasonable inputs, we assume that |P |+ |N | ≤ ` and thus the number of pairs |P ×N |
is at most `2/4. To arrive at a contradiction we now suppose that n ≥ `3. Thus for each
z < `3, there is a pair (ax, ay) ∈ P × N , such that x ≡ y mod z. We restrict ourselves

to prime cycle lengths z < `3 and let q = π(`3 − 1) ≈ `3

3 ln ` be the number of these
primes. Since there are at most `2/4 pairs, the pigeon hole principle implies that there
must be some pair (ax, ay) ∈ P ×N , such that there are 4q/`2 distinct primes z1, . . . , z4q/`2

with x ≡ y mod zi for each 1 ≤ i ≤ 4q/`2. By the chinese remainder theorem, we get
x ≡ y mod

∏

zi and thus |x − y| ≥
∏

zi > (4q/`2)!. This implies, that there must be
some example ax ∈ P ∪ N with log x > log((4q/`2)!). We apply Stirling’s approximation
to 4q/`2 ≈ 4`

3 ln ` and receive log x > ` for ` large enough. But this contradicts the definition
of ` =

∑

w∈P∪N log |w|. Thus an automaton size n ≥ `3 is impossible.

With the knowledge of Lemma 1 and 2 it is easy to derive the efficient Algorithm 1
that computes a minimum consistent dfa.

Algorithm 1

Input: example sets P,N .
z := 1; n := ∞;
while n > z do

if sz(P,N) < n then

n := sz(P,N); z′ := z;
end if

z := z + 1;
end while

Output dfa with cycle length z ′ and path length n − z′ consistent with P and N .

4

Theorem 1. Let ` = `(P,N) be the input size for example sets P,N ⊆ {a}∗, then Algo-
rithm 1 computes a minimum consistent dfa of size n for P,N in time O(n · `) = O(`4).

Proof. The algorithm calculates the correct size, since it calculates the correct size for
every cycle length z = 1, 2, . . . until some dfa with n ≤ z states is found. Larger cycles are
not considered, since they result in dfa’s larger than the one already found.

Obviously we need n iterations of the while loop. Every loop needs mainly the time to
determine sz(P,N). This can be achieved in O(`) steps as a result of Lemma 1, by storing
the length of the longest example for each residue.

Next we consider the unary minimum consistent nfa problem. The following lemma
shows that for a minimally d-cyclic language L, specifying all examples from {a}<2d2+d :=
⋃

i<2d2+d{a
i} ensures, that the minimum consistent nfa accepts exactly L. This will lead

us to a hardness result for the unary minimum consistent nfa problem derived from the
hardness of determining the size of a minimum nfa equivalent to a given cyclic dfa.

Lemma 3. Let L ⊆ {a}∗ be a minimally d-cyclic language. If M is a minimum nfa
consistent with P = L ∩ {a}<2d2+d and N = {a}<2d2+d \ P , then L(M) = L.

Proof. Let A be a minimum nfa with L(A) = L and |QA| states, then A is obviously
consistent with (P,N) and |QA| ≤ d holds. So for the sake of contradiction, assume that
there is some nfa M with |QM | < |QA| states consistent with (P,N), but L(M) 6= L.

M can be converted into an equivalent nfa M ′ in Chrobak normal form. M ′ has a path
of length at most |QM |2 + |QM | < d2 + d. The last state of the path has transitions to
disjoint deterministic cycles of cycle lengths c1, . . . , cm. The language L(M ′) is ultimately
c := lcm(c1, . . . , cm)-cyclic and

∑m
i=1 ci ≤ |QM | < d. We thus have for every j ≥ d2 + d :

aj ∈ L(M ′) ⇔ aj+c ∈ L(M ′).
We first show that c < d is impossible. Since L is minimally d-cyclic, ∀c < d ∃i :

ai ∈ L ⇔ ai+c 6∈ L. This is also true for some i′ with d2 + d ≤ i′ < d2 + 2d: let
ai ∈ L ⇔ ai+c 6∈ L, then for every x ∈ Z, i+xd ≥ 0 : ai+xd ∈ L ⇔ ai+xd+c 6∈ L. Obviously
i′ = i + xd can be chosen accordingly. So M ′ cannot be consistent with (P,N), if c < d.

If c = d, then L = L(M ′) = L(M), but this contradicts our assumption that L(M) 6= L.
Now assume c > d. We show how to replace M ′ by an nfa M ′′ with shorter cycles, still

consistent with (P,N) and ultimately d-cyclic, and thus d-cyclic. (L(M ′′) = L(M ′) does
not necessarily hold.) There must be some cycle Ck in M ′ with length ck < d, ck 6 | d, since
c = lcm(c1, . . . , cm) > d. We may assume that there is some final state in Ck (otherwise
we may drop Ck) and therefore, there is some d2 + d ≤ i < d2 + d + ck, such that for
every x ∈ N0 : ai+xck ∈ L(M ′). Because L is d-cyclic and M ′ is consistent with (P,N),
∀x ∈ N0, y ∈ Z, d2 +d ≤ i+xck + yd < 2d2 +d : ai+xck+yd ∈ L. From Fact 1 below follows
for every x ∈ N0, i+x gcd(ck, d) < 2d2+d : ai+x gcd(ck,d) ∈ L. Thus for every ai that reaches
some final state in Ck, the words aj with j ≡ i(mod gcd(ck, d)) and d2 + d ≤ j < 2d2 + d
are also accepted by M ′. Thus Ck can be replaced by a cycle of length gcd(ck, d) and the
new nfa remains consistent with (P,N). We observe that we can replace every cycle with
a length not dividing d by a cycle with length dividing d and the resulting nfa M ′′ remains
consistent with (P,N). Since M ′′ is ultimately d-cyclic and behaves d-cyclic on its path,
we can remove the path. This contradicts the assumption that M is minimal, since we
can construct an nfa of size 1 +

∑m
k=1 gcd(ck, d) <

∑m
k=1 ck ≤ |QM | with disjoint cycles

and a single initial state that is consistent with (P,N) (and accepts L).

5

Fact 1. For a, b ∈ N, the set {ma+nb|m,n ∈ N0∧ma+nb ≥ a·b} equals {m·gcd(a, b)|m ∈
N ∧ m · gcd(a, b) ≥ a · b}.

We now derive a hardness result for the unary minimum consistent nfa problem. Let
MinNFA-UCL (minimum nfa for a unary cyclic language) be the problem: is there a
k-state nfa accepting L(M) for given unary cyclic dfa M and an integer k (in binary) [6].

Theorem 2. (a) MinNFA-UCL is polynomial time reducible to the unary minimum con-
sistent nfa problem.

(b) The unary minimum consistent nfa problem is in NP , but not in P , unless NP ⊆
DTIME(nO(log n)).

Proof. (a) Given the unary cyclic dfa M with d states, we construct P = L(M)∩{a}<2d2+d

and N = {a}<2d2+d \ P in polynomial time. According to Lemma 3, there is an nfa with
k states consistent with (P,N) iff there is an nfa with k states accepting L(M).

(b) The problem is in NP , since we can efficiently check, if a given unary nfa is
consistent with (P,N). Jiang, McDowell and Ravikumar [6] show that minNFA-UCL is
not in P , unless NP ⊆ DTIME(nO(log n)). We continue their reduction from vertex cover
to minNFA-UCL for the unary minimum consistent nfa problem with part (a).

As we have seen that the exact solution of the unary minimum consistent nfa problem
is intractable, we are satisfied with a good efficient approximation. The general minimum
consistent nfa problem cannot be efficiently approximated within any polynomial [8] and
even weaker approximations are intractable [4], whereas we next exhibit an algorithm
which efficiently and constructively approximates a unary minimum consistent nfa within
a quadratic function of the optimal size.

For k = 1, 2, . . . the algorithm constructs an nfa in Chrobak normal form with k2 states
in its path and k cycles with all possible cycle lengths 1, . . . , k. The algorithm marks
every state that cannot be reached by an example from N as accepting and afterwards
checks if every example of P is covered by some accepting state. If this is the case the
algorithm outputs the automaton with O(k2) states, otherwise the next iteration starts
with k := k + 1. Theorem 3 is proved by showing that no automaton with less than k − 1
states can be consistent with (P,N).

Theorem 3. Let opt be the number of states of a minimum nfa consistent with P,N ⊆
{a}∗ and let ` = `(P,N) be the input size. There is an algorithm which computes an nfa
M with O(opt2) states that is consistent with (P,N) in time O(opt3 ·(|P |+ |N |)) = O(`10).

Proof. Let M be constructed by the algorithm described above. M is consistent with
(P,N), we make sure that no example from N is accepted and every example from P
reaches some accepting state.

We show that the algorithm stops after k ≤ opt+1 iterations. Thus the size O(opt2) of
M and the running time O(opt3 ·(|P |+ |N |)) is obvious, since we can check for each state q
and each example w, whether w reaches q. Lemma 2 implies O(opt3 ·(|P |+ |N |)) = O(`10).

At the latest in iteration k = opt + 1, we construct an nfa M with (opt + 1)2 states
which behaves as a minimum consistent nfa Mopt with opt states on (P,N). Just assume
Mopt is brought into Chrobak normal form, then M can covers all of its cycles.

6

3 VC Dimension and PAC Learning

The Vapnik Chervonenkis dimension yields an upper bound for the number of examples
that are required for successful PAC learning. For a definition see [7].

We can determine the VC dimension of the class of unary regular languages that are
accepted by dfa’s with n states almost exactly.

Theorem 4. Let Ln be the class of unary regular languages that can be accepted by dfa’s
with at most n states and let π(n) be the number of primes less than or equal to n. Then
n − 1 + blog(π(n) + 1)c ≤ VC(Ln) ≤ n + log(n) holds for n ∈ N.

Proof. We assume that every L ∈ Ln is accepted by a dfa with exactly n states and that
states are numbered 1, 2, . . . , n. There are at most n ·2n distinct languages in Ln, because
there are n possible path lengths and 2n choices for the final states. The upper bound
holds, since VC(Ln) ≤ log(|Ln|) is shown for arbitrary concept classes in [7].

For n ≥ 5 we exhibit a set S = S1 ∪ S2 with n − 1 + blog(π(n) + 1)c elements that
can be shattered by Ln, i.e. for any s ⊆ S, there is some L ∈ Ln, such that s = L ∩ S.
S1 is simply {a0, . . . , an−3}. Let q = b1 + log(π(n) + 1)c, let r = 2q−1 − 1 and let
S2 = {w1, . . . , wq} with words wi chosen carefully with the help of the chinese remainder
theorem. Let s1, . . . , sr be all the vectors from ({0}×{0, 1}q−1) \ {0}q , i.e. {0, 1}q-vectors
with a leading 0 except for the 0q-vector. There are r = 2q−1 − 1 =≤ π(n) many of
them. We use the first r primes p1, . . . , pr as potential cycle lengths and define a code
c(k) = (k−n+2 mod p1, . . . , k−n+2 mod pr), so for k ≥ n with c(k) ∈ {0, 1}r the word
ak reaches either the last (n-th) or the (n − 1)st state of a dfa with n states and cycle
length pi for any 1 ≤ i ≤ r.

Figure 1 shows a family of dfa’s with 5 states and prime cycle lengths 2, 3, 5. The
figure also shows in which states the words of S = {a0, a1, a2, a19, a24, a33} end. The
corresponding c(·) vectors are c(33) = (0, 0, 0), c(19) = (0, 1, 1), c(24) = (1, 0, 1). Now
assume that the column vectors s1, . . . , sr are placed into a matrix (mj,i)1≤j≤q,1≤i≤r. We
use those q words ak with codes c(k) that appear as rows in the matrix (mj,i) to build the
set S2, i.e. wj = ak with n ≤ k < n +

∏

i pi ∧ c(k) = (mj,1,mj,2, . . . ,mj,r) for 1 ≤ j ≤ q.
To shatter an arbitrary subset ∅ 6= s ⊂ S2, we look at the incidence vector v(s) of s.

(i) If w1 6∈ s, then v(s) = si∗ , and (ii) if w1 ∈ s, then v(S2 \ s) = si∗ for some 1 ≤ i∗ ≤ r.
Choose M as a unary n-state dfa with cycle length pi∗ and (i) state n final, state n − 1
non-final, resp. (ii) state n non-final, state n − 1 final. Then L(M) ∩ S2 = s.

For an arbitrary subset s ⊆ S = S1 ∪ S2, we choose a dfa M with n states, such that
s = L(M) ∩ S as shown above, by setting the acceptance on the path accordingly.

The size of S = S1 ∪ S2 is n − 2 + q = n − 1 + blog(π(n) + 1)c and gives the lower
bound for VC(Ln). For n < 5, S = {0, 1, . . . , n − 1} is shattered by the path already.

Since π(n) ≈ n/ lnn, the lower bound and the upper bound for the VC dimension only
differ by an additive term O(log lnn).

The connection between the VC dimension and the number of examples for PAC
algorithms is applied to receive the following corollary for unary dfa’s.

Corollary 1. Let Cn be the class of all regular languages represented by unary dfa’s with
at most n states. Then (Cn|n ∈ N) is efficiently PAC learnable.

7

��
��

��
��

��
��

��
��

��
��

- - - --

?

a0 a1 a2 a19, a33 a24

��
��

��
��

��
��

��
��

��
��

- - - --

?

a0 a1 a2 a33, a24 a19

��
��

��
��

��
��

��
��

��
��

- - - --

?

a0 a1 a2 a33 a19, a24

Figure 1: A family of dfa’s with 5 states that shatter S = {a0, a1, a2, a19, a24, a33}.

Proof. Algorithm 1 efficiently produces a minimum consistent hypothesis for given exam-
ples. The VC dimension of Cn is at most n+log n. Thus by Theorem 3.3 of [7], Algorithm
1 is an efficient PAC algorithm, if it demands Θ(1

ε log 1
δ + n+log n

ε log 1
ε) examples.

On the other hand, due to the intractability of the unary minimum consistent nfa
problem, we show next that efficient PAC learning algorithms for unary nfa’s probably do
not exist, but approximative learning is possible. Let QRP be the class of all languages
recognizable by Monte-Carlo Turing machines running in quasipolynomial time nO(log n).

Corollary 2. Let Nn be the class of regular languages represented by unary nfa’s with at
most n states. Then (Nn|n ∈ N) is not efficiently PAC learnable, if hypotheses from Nn

are used for concepts in Nn and if NP 6⊆ QRP , whereas (Nn|n ∈ N) is efficiently PAC
learnable with hypotheses from NO(n2) for concepts from Nn.

Proof. By Theorem 2 the consistency problem does not belong to QRP , unless NP ⊆
QRP , and it is well known that N = (Nn|n ∈ N) is not efficiently PAC learnable by
hypotheses from N in quasipolynomial time, unless the consistency problem belongs to
QRP . The positive result is derived as in Corollary 1 with Theorem 3 and VC(Nn) ≤
log |Nn| ≤ n log n (see [3]).

4 Learning with equivalence queries

We consider the problem of learning a concept from the concept class of unary cyclic
dfa’s within the model of learning with equivalence queries. I.e., the learner submits a
hypothesis from the hypothesis class and the oracle will either confirm the correctness of
the hypothesis or give a counterexample.

In the case of unary cyclic dfa’s, we show that restricting the concept class and the hy-
pothesis class to cycles with p ≤ n states for prime p implies that Θ(n2

ln n) counterexamples
are necessary and sufficient.

As we will see in Theorem 6, the number of questions decreases, if we allow larger dfa’s
in the hypothesis class.

8

Theorem 5. Let Cn = Hn be the set of unary cyclic dfa’s with p ≤ n states for prime p.
(a) There is a learning algorithm that submits dfa’s from Hn and needs at most O(n2

ln n)
counterexamples to learn a concept L(C) with C ∈ Cn.

(b) There is an oracle, such that each learning algorithm that submits dfa’s from Hn

needs at least Ω(n2

ln n) counterexamples to learn a concept L(C) with C ∈ Cn.

Proof. (a) The algorithm enumerates all the prime cycle lengths p ≤ n. For each p the
algorithm constructs cyclic dfa’s with p states and needs at most p counterexamples to
conclude that no dfa with cycle length p can accept the concept L(C): The algorithm first
submits a dfa for the empty language. If the oracle gives a counterexample ax ∈ L(C),
then the algorithm adjusts the dfa to accept all ay with y ≡ x(mod p), i.e., it adds the
according state to the set of final states and submits the new dfa. Again, when the
algorithm receives a counterexample ax′

∈ L(C) from the oracle, it adds a final state.
The algorithm may continue like this, until it receives a counterexample ax̄ 6∈ L(C) or the
oracle confirms that the hypothesis is equivalent to C. The former implies, that the cycle
length of C cannot be p, since the algorithm added the final state that accepts ax̄ 6∈ L(C),
because there was a counterexample ax ∈ L(C) with x ≡ x̄(mod p) given before.

So the total number of counterexamples is limited by
∑

p≤n,pprime p. To estimate this
sum, let pi be the i-th prime number, then i ln i ≤ pi ≤ 2i ln i holds for i ≥ 3. The number
of primes of size at most n is approximately n

ln n .

n
ln n
∑

i=1

pi ≤ 2

n
ln n
∑

i=1

i ln i ≈ 2

∫ n
ln n

1
x lnxdx = O

(

n2

lnn

)

.

(b) We construct the oracle that forces every learning algorithm to use Ω(n2

lnn) equiv-
alence queries. For each prime p ≤ n the oracle keeps a list of residues (mod p) that are
commited. We say, that a residue y is commited for each prime p, if the oracle gave a
counterexample ax with x ≡ y(mod p). We say, that a prime is fully commited, if each of
its residues is commited. We assume that the oracle freely gives examples a0 6∈ L(C) and
a1 ∈ L(C) in advance and thus commits the residues 0 and 1 for each prime.

The oracle generally answers with an old counterexample if a hypothesis inconsistent
with previous examples is submitted. Thus we may assume, that only consistent hypothe-
ses are submitted. For a hypothesis with prime cycle length p∗, the chinese remainder
theorem allows the oracle, to only commit one new residue modulo p∗ and stick to the
already commited residues 0 and 1 for the other primes as follows. For a submitted dfa
D, with cycle length p∗ which is not fully commited, the oracle chooses a non-commited
residue r(mod p∗). If ar ∈ L(D), then the oracle answers ar′ 6∈ L(C) with r′ ≡ r(mod p∗)
and r′ ≡ 0(mod p) for every prime p 6= p∗, p ≤ n. If ar 6∈ L(D), then the oracle answers
accordingly with ar′ ∈ L(C), where r′ ≡ r(mod p∗) and r′ ≡ 1(mod p) for every prime
p 6= p∗. If p∗ is fully commited (and D is consistent), then the oracle gives ar ∈ L(C) with
r ≡ 0(mod p∗) and r ≡ 1(mod p) for every prime p 6= p∗. Thus the learning algorithm
will not submit dfa’s with cycle length p∗ any more, since they cannot be consistent.

The oracle will confirm the correctness of D, if every prime is fully committed and D
is consistent. (D can be chosen with cycle length p∗, where p∗ is the last prime that has
been fully commited, and the final states of D can be chosen according to the commit-
ments stored for p∗. These commitments have never been contradictory.) So the learning

algorithm will have to receive
∑

(pi − 1) = Ω(n2

lnn) counterexamples.

9

The situation changes, if we allow hypotheses with cycle-lengths that are composite
numbers larger than n. Especially, if we allow cyclic dfa’s with n! states, then we only
need O(n) counterexamples. We can allow arbitrary cycle lengths ≤ n as concepts for the
upper bound, whereas the oracle only needs prime cycle lengths for the lower bound.

Theorem 6. Let Cn be the set of unary cyclic dfa’s with at most n states and let C∗
n ⊂ Cn

only contain prime cycle lengths. Let Hn,d be the set of unary cyclic dfa’s with at most nd

states for d ≤ n.
(a) There is a learning algorithm that submits dfa’s from Hn,d and needs at most O(n2

d)
counterexamples to learn a concept L(C) with C ∈ Cn.

(b) There is an oracle, such that each learning algorithm that submits dfa’s from Hn,d

needs at least Ω(n2·ln d
d·(ln n)2

) counterexamples to learn a concept L(C) with C ∈ C∗
n.

Proof. The algorithm breaks the factorial n! into d n
d e blocks n1, . . . , ndn

d
e ≤ nd with ni =

(d·i)!
(d·(i−1))! for i < dn

d e and ndn
d
e = n!

(d·(dn
d
e−1))! . Thus ni ≤ nd obviously holds.1 For simplicity

we call d · (i − 1) + 1, . . . , d · i the factors of ni (resp. d · (dn
d e) + 1, . . . , n for ndn

d
e).

The algorithm considers each block ni separately. We show, how the algorithm can
rule out each factor of ni as a potential cycle length of the concept C with ki + d coun-
terexamples, where ki is the largest factor of ni.

For each factor z of ni the algorithm stores for each residue modulo z whether the
according state in a cyclic dfa with z states should be final or is unresolved. If the learning
algorithm receives a positive counterexample ax, then for each factor z of ni the algorithm
marks the residue x(mod z) as final. If the algorithm receives a negative counterexample
x 6∈ L(C), then it concludes, that those factors z for which x(mod z) was marked final,
cannot be the cycle length of C and marks z as excluded.

The first dfa submitted accepts the empty language. From then on the algorithm will
submit cyclic dfa’s with ni states. A state x′(mod ni) in this dfa is final, iff there is a
non-excluded factor z of ni, such that the residue x′(mod z) is marked as final.

For each submitted dfa, the algorithm either gets a positive example, which marks
exactly one residue for each factor as final, or the algorithm gets a negative example,
which excludes at least one factor as a potential cycle length. So for each block ni the
algorithm needs at most ki +d counterexamples, where ki is the largest factor of ni. Thus

the algorithm needs at most
∑dn

d
e

i=1 (ki + d) ≤ dn
d e · (n + d) = O(n2

d) counterexamples.
(b) As in the proof of Theorem 5 (b) keeps a list of commited residues for each prime

p ≤ n. Commitment is defined exactly as in that proof.
Presently we assume, that the learning algorithm may only submit dfa’s with a cycle

length that is a product of s primes. We will see later, how we can relate s to d and how
we can handle composite numbers with prime powers as factors.

The oracle commits 0 and 1 for every prime. Now it commits at most s new residues
for each dfa submitted by the learning algorithm. Assume, that D is a cyclic dfa consistent
with the previous examples, and that its cycle length z factors to pi1 · · · pis .

Let F ⊆ {ij |j = 1, . . . , s} be the index set of the fully commited primes and N =
{ij |j = 1, . . . , s} \ F be the index set of primes factoring z with non-commited residues.
(Keep in mind, that F might be empty.) Then the oracle chooses a non-commited residue

1Packing the factors of n! can be done more efficiently, but won’t change the asymptotic behaviour.

10

rij (mod pij) for each ij ∈ N and computes x with x ≡ rij (mod pij) for each ij ∈ N
and x ≡ 0(mod pij) for each ij ∈ F . If ax ∈ L(D), then the oracle computes x′ with
x′ ≡ x(mod z) and x′ ≡ 0(mod p) for every prime p ≤ n, p 6= pij for each j. The oracle

gives the counterexample ax′
6∈ L(C). Accordingly, the oracle computes x′ ≡ x(mod z)

and x′ ≡ 1(mod p) for every p 6= pij for each j, if ax 6∈ L(D) and answers ax′
∈ L(C).

Again, if all primes are fully committed and the learning algorithm submits a dfa
D ∈ C consistent with the given examples, then the oracle confirms D’s correctness. D
always exists, since its cycle length can be chosen as one of the primes p, that became fully
committed in the last step and D accepts according to the commitments of the residues
modulo p.

To estimate the number of counterexamples needed, we first observe, that the total
number of non-committed residues at the beginning is Ω(n2

lnn) and that the oracle commits

at most s residues for each submitted dfa. So Ω(n2

s·lnn) counterexamples are needed.
Now we estimate the number s of distinct prime factors for numbers of size at most

nd. The product
∏s

i=1 pi is the smallest number with s distinct prime factors. We can
bound it by

s
∏

i=1

pi ≥
s

∏

i=1

i ln i ≥
s

∏

i= s
2

s

2
ln

s

2
≥

(s

2

)
s
2

.

This implies s ≤ 2d ln n
ln d , if the largest dfa allowed consists of nd states. To prove this,

assume that s > 2d lnn
ln d . Then

s

2
ln

s

2
>

d ln n

ln d
· ln

(

d lnn

ln d

)

≥
d lnn

ln d
·

(

ln d + ln

(

lnn

ln d

))

≥ d lnn

is true for d ≤ n and thus
∏s

i=1 pi ≥
(

s
2

)
s
2 = e

s
2

ln s
2 > nd, which contradicts the upper

bound for the cycle length.

So the number of questions is at least Ω
(

n2

s·lnn

)

≥ Ω
(

n2 ln d
d(ln n)2

)

.

If the learning algorithm submits a dfa with a cycle length that factors to a prime
power pα for 1 < α ∈ N, we can just treat this dfa, as if the prime factor was only p1.

Remark 1. It is obvious, that the algorithm in the proof of (a) uses no more than 2n
counterexamples for hypotheses of cycle length n!, since it needs only one block. It is well
known that the VC dimension is a lower bound for the number of counterexamples required
for successful learning with equivalence queries. And hence, since the VC dimension for
the class of languages accepted by cyclic dfa’s with at most n states is at least n, our
algorithm is almost optimal.

Remark 2. If n ≥ d ≥ nΩ(1), then the number of counterexamples needed in part (b) is

bounded by Ω
(

n2 ln d
d(ln n)2

)

≥ Ω
(

n2

d ln n

)

.

5 Conclusions and open problems

Our results show that problems of learning unary dfa’s and nfa’s in the context of PAC
learning and learning with equivalence queries have reduced complexity compared to the
non-unary case.

11

Unary dfa’s are efficiently PAC learnable (see Corollary 1), whereas general dfa’s are
not efficiently PAC learnable with small dfa’s as hypotheses, if NP 6= RP [7]. PAC
learning of unary nfa’s with small nfa’s as hypotheses remains intractable, but we have to
use the stronger, yet plausible, assumption NP 6⊆ QRP (see Corollary 2). If we allow nfa’s
with n2 states as hypotheses, unary nfa’s with n states become efficiently PAC learnable.

Angluin [1] (unconditionally) shows that no polynomial time learning algorithm is able
to learn dfa’s in the model of learning with equivalence queries. The restriction to unary
cyclic dfa’s with prime cycle length yields a polynomial number of counterexamples and
each hypothesis can efficiently be constructed (see Theorem 5).

It is not clear, if the upper bound for the number of counterexamples in Theorem
6 yields any efficient learning result, since the learning algorithm proposed here must
construct exponentially large hypotheses.

We have not addressed the question of learning unary nfa’s with equivalence queries
yet. We think that a solution for learning non-cyclic unary dfa’s with equivalence queries
is possible by adapting the methods of Theorem 5, but we have not looked at it yet.

We have not considered learnability for unary probabilistic finite automata. The re-
striction to a given constant isolation might yield positive results.

We would like to thank an anonymous referee for many helpful suggestions.

References

[1] D. Angluin. Negative Results for Equivalence Queries. Machine Learning, 6(2), 1990,
pp. 121–150.

[2] M. Chrobak. Finite automata and unary languages. Theoretical Computer Science,
47, 1986, pp. 149–158.

[3] M. Domaratzki, D. Kisman and J. Shallit. On the Number of Distinct Languages
Accepted by Finite Automata with n States. Journal of Automata, Languages and
Combinatorics, 7(4), 2002, pp. 469–486

[4] G. Gramlich, G. Schnitger. Minimizing NFA’s and Regular Expressions. Proc. of
Syposium on Theoretical Aspects of Computer Science 2005, Springer-Verlag, LNCS
3404, 2005, pp. 399–411.

[5] R. Herrmann. Lernen regulärer unärer Sprachen. Masters Thesis, 2004.

[6] T. Jiang, E. McDowell and B. Ravikumar. The structure and complexity of minimal
NFA’s over a unary alphabet. Int. J. Found. of Comp. Sci., 2 (1991), pp. 163–182.

[7] M. Kearns and U. V. Vazirani. An Introduction to Computational Learning Theory.
The MIT Press, Cambridge Massachusetts, 1994.

[8] L. Pitt and M. K. Warmuth. The Minimum Consistent DFA Problem Cannot be
Approximated within any Polynomial. Journal of the ACM, 40(1), 1993, pp. 95–142.

12

