
Minimizing NFA’s and Regular Expressions

(Extended Conference Version)

Gregor Gramlich, Georg Schnitger ?

Institut für Informatik
Johann Wolfgang Goethe–Universität Frankfurt

Robert-Mayer-Straße 11-15
60054 Frankfurt am Main, Germany

{gramlich,georg}@thi.informatik.uni-frankfurt.de
Fax: +49 - 69 - 798-28814

c© Springer-Verlag
Published in STACS 2005

22nd International Symposium on Theoretical Aspects of Computer Science, pp. 399-411.
Lecture Notes in Computer Science 3404

Abstract. We show inapproximability results concerning minimization of nondeterministic
finite automata (nfa’s) as well as regular expressions relative to given nfa’s, regular expres-
sions or deterministic finite automata (dfa’s). We show that it is impossible to efficiently
minimize a given nfa or regular expression with n states, transitions, resp. symbols within
the factor o(n), unless P = PSPACE. Our inapproximability results for a given dfa with n

states are based on cryptographic assumptions and we show that any efficient algorithm will
have an approximation factor of at least n

poly(log n)
. Our setup also allows us to analyze the

minimum consistent dfa problem.
Classification: Automata and Formal Languages, Computational Complexity, Approxima-
bility

1 Introduction

Among the most basic objects of formal language theory are regular languages and their acceptance
devices, finite automata and regular expressions. Regular expressions describe lexical tokens for
syntactic specifications, textual patterns in text manipulation systems and they are the basis
of standard utilities such as scanner generators, editors or programming languages (perl, awk,
php). Internally regular expressions are converted to (nondeterministic) finite automata and the
succinctness of this representation crucially determines the running time of the applied algorithms.

Contrary to the problem of minimizing dfa’s, which is efficiently possible, it is well known
that nfa or regular expression minimization is computationally hard, namely PSPACE-complete
[10]. Jiang and Ravikumar [7] show moreover that the minimization problem for nfa’s or regular
expressions remains PSPACE-complete, even when specifying the regular language by a dfa.

We consider the problem of approximating a minimal nfa or a minimal regular expression. In
[3] it is shown that unary nfa’s are hard to approximate and in particular efficient approximation

algorithms require an approximation factor of at least
√

n
ln n for given nfa’s or regular expressions of

size n, provided P 6= NP . On the other hand, there are several approaches to nfa minimization
[1, 4, 5, 9] without approximation guarantees or running in at least exponential time. This article
explains why such guarantees cannot be expected for efficient algorithms.

We investigate the approximation problem in two scenarios. In the first scenario the language
is specified by a dfa which makes proofs of inapproximability hard, since the input is not specified
concisely and thus more time compared to concise inputs such as nfa’s or regular expressions is
available. Jiang and Ravikumar [7] ask to determine the approximation complexity of converting
dfa’s into nfa’s, and in particular ask whether efficient approximation algorithms with a poly-
nomial approximation factor exist. Corollary 1 shows that such an approximation is at least as

? partially supported by DFG project SCHN503/2-1



hard as factoring Blum integers and therefore efficient approximation algorithms with polynomial
approximation factor are unlikely.

We show in Theorem 1 that efficient approximation algorithms determine regular expressions
of length at least k

poly(log k) for a given dfa of size k, even if optimal regular expressions of length

poly(log k) exist. We have to assume however that strong pseudo-random functions exist in non-
uniform NC1. The concept of a strong pseudo-random function is introduced by Razborov and
Rudich [14]. Naor and Reingold [11] show that strong pseudo-random functions exist even in TC0,
provided factoring Blum integers requires time 2Ω(nε) (for some ε > 0).

We show similar results for approximating nfa’s in Corollary 1, but now relative to the as-
sumption that strong pseudo-random functions exist in non-uniform Logspace. We also apply our
technique to the minimum consistent dfa problem [8, 12] in which a dfa of minimum size, consistent
with a set of classified inputs, is to be determined.

Thus in the first scenario we follow the cryptographic approach of Kearns and Valiant [8] when
analyzing the complexity of approximation, but work with pseudo-random functions instead of
one-way functions. In the second scenario we assume that the language is specified by either an
nfa or a regular expression. For the unary case we improve in Theorem 3 the approximation factor

from
√

n
ln n [3] to n1−δ for every δ > 0, provided P 6= NP and provided we require the approximation

algorithm to determine a small equivalent nfa or regular expression, opposed to just determining
the number of states.

Furthermore we show a PSPACE-completeness result for approximating the minimal size of
general nfa’s or regular expressions. Specifically Theorem 4 shows that it is impossible to efficiently
minimize a given nfa or regular expression with n states, n transitions resp. n symbols within the
factor o(n), unless P = PSPACE. The proof of Theorem 4 is based on the PSPACE-completeness
of the “regular expression non-universality” problem.

We introduce strong pseudo-random functions in section 2 and investigate the complexity of
approximating minimal regular expressions or nfa’s, relative to a given dfa, in subsections 2.1 and
2.2. The minimum consistent dfa problem is considered in subsection 2.3. Finally the complexity
of approximately minimizing unary resp. general nfa’s or regular expressions, relative to a given
nfa or regular expression, is determined in section 3.

2 Pseudo-Random Functions and Approximation

We consider the question of computing small equivalent nfa’s or regular expressions for given dfa’s.
Inapproximability results seem to be hard to prove, since, intuitively, it takes large dfa’s to specify
hard inputs and consequently the allowed running time increases. Therefore we investigate the
approximation complexity for minimum nfa’s or regular expressions when given the truth table
of a function f : {0, 1}n → {0, 1} and utilize the natural proof setup of Razborov and Rudich
[14]. In particular, we utilize the concept of strong pseudo-random functions, but replace circuits
by probabilistic Turing machines and require only a constant probability of separating pseudo-
randomness from true randomness. Obviously strong pseudo-random functions exist in our setting,
provided strong pseudo-random functions exist in the sense of Razborov and Rudich.

Definition 1. Let fn = (fs
n)s∈S be a function ensemble with functions f s

n : {0, 1}n → {0, 1} for
a seed s ∈ S and let (ri

n)i∈{1,...,22n} be the ensemble of all n-bit boolean functions. We call fn a
strong pseudo-random ensemble with parameter ε iff for any randomized algorithm A

|prob[A(fn) = 1]− prob[A(rn) = 1]| < 1

3
,

provided A runs in time 2O(nε) and has access to f s
n, resp. ri

n, via a membership oracle. The
probability is defined by the random choices of A and the uniform sampling of s from S, resp. the
uniform sampling of i from {1, . . . , 22n}.

It is widely believed that there is some ε > 0, such that any algorithm running in time 2O(nε)

cannot factor Blum integers well on average. Naor and Reingold [11] construct TC0 functions
which are strong pseudo-random functions, provided factoring Blum integers requires time 2Ω(nε)

for some ε.



Definition 2. Bn is the set of all n-bit boolean functions. We define the compression km : Bn →
Bm for m < n by (km(f))(x) = f(0n−mx) for x ∈ {0, 1}m.

We say, that a functional G = (Gn)n with Gn : Bn → IN separates a function class C from
random functions with thresholds t1(·) and t2(·) iff Gn(f) < t1(n) holds for every function f ∈
C ∩Bn, whereas Gn(ρ) > t2(n) for most functions in Bn, i.e., |{ρ ∈ Bn|Gn(ρ) ≤ t2(n)}| = o(|Bn|)
holds. Moreover we require that Gm(km(f)) ≤ t1(n) · poly(n) for any function f ∈ C ∩Bn and any
m < n.

It is not surprising that a functional G, which separates a function class C containing pseudo-
random functions from random functions, cannot be efficiently approximated. We allow randomized
approximation algorithms which may even underestimate the minimum.

Definition 3. Let |x| be the length of input x. We say that a randomized algorithm App : X → IN
with approximation factor µ(|x|) for a minimization problem opt has overestimation error ε+ =
supx∈X prob[App(x) > µ(|x|) · opt(x)] and underestimation error ε− = supx∈X prob[App(x) <

opt(x)]. The probabilities are defined by the random choices of App.

We state a generic lemma for approximation algorithms on compressed inputs allowing us to
replace oracle access by truth table presentation.

Lemma 1. Assume that the functional G separates C from random functions with thresholds t1, t2
and suppose that C contains a strong pseudo-random ensemble with parameter ε.

Let App be a randomized approximation algorithm that approximately determines Gm(hm),

when given the truth table of a function hm ∈ Bm. Then for all l ≥ 1, if App runs in time 2O(ml)

with errors ε++ε− < 2
3 , then App can only achieve an approximation factor µm ≥ t2(m)

t1(ml/ε)poly(ml/ε)
.

Proof. By assumption C contains strong pseudo-random functions with parameter ε. Let App be
an algorithm which approximates Gm(fm) when given the truth table of fm (with running time

2O(ml) for some l ≥ 1, approximation factor 1 ≤ µm <
t2(m)

t1(ml/ε)poly(ml/ε)
and errors ε+ + ε− < 2

3 ).

We construct an algorithm A which uses App to distinguish n-bit functions in C from n-bit random
functions. We set m = bnε/lc.

A has oracle access to the input hn ∈ Bn and builds the truth table for the restriction km(hn).
Then A runs App on km(hn) and accepts (i.e. A(hn) = 1), if App(km(hn)) ≤ t2(m), and rejects
(i.e. A(hn) = 0) otherwise. So |prob[A(fn) = 1] − prob[A(rn) = 1]| = |prob[App(km(fn)) ≤
t2(m)] − prob[App(km(rn)) ≤ t2(m)]| holds, where probabilities are taken over the probabilistic
choices of App as well as the random sampling of seeds for fn, respectively the uniform random
sampling of functions rn ∈ Bn.

G separates C from random functions and hence we have Gm(km(fn)) ≤ t1(n) · poly(n) for
fn ⊆ C. Finally observe that µm · t1(n) · poly(n) < t2(m) holds by assumption on µm.

prob[App(km(fn)) ≤ t2(m)] ≥ prob[App(km(fn)) ≤ µm · t1(n) · poly(n)]

= 1− prob[App(km(fn)) > µm · t1(n) · poly(n)]

≥ 1− prob[App(km(fn)) > µm ·Gm(km(fn))]

and prob[App(km(fn)) ≤ t2(m)] ≥ 1− ε+ follows. We utilize that a uniformly sampled function rn

from Bn leads to a uniformly sampled restriction from Bm.

prob[App(km(rn)) ≤ t2(m)] ≤ prob[Gm(km(rn)) ≤ t2(m)] + ε−

=
|{ρm|Gm(ρm) ≤ t2(m)}|

|Bm|
+ ε− = ε− + o(1).

Thus |prob[App(km(fn)) ≤ t2(m)]−prob[App(km(rn)) ≤ t2(m)]| ≥ 1−ε+−ε−−o(1) > 1
3 holds for

sufficiently large m. Since A runs in time O(2m)+2O(ml) = 2O(nε) this contradicts the assumption
that C contains a strong pseudo-random ensemble with parameter ε. ut

In our first applications of Lemma 1, G(f) will be the minimum length of regular expressions,
respectively the minimum size of nfa’s that accept, for some T , the complement of

LT (f) = {xT |f(x) = 1}.



2.1 Regular Expressions and Logarithmic Formula Depth

Definition 4. A formula is a binary tree with ∧ and ∨ gates as interior nodes; leaves are marked by
labels from {x1, x1, . . . , xi, xi, . . .}. For a formula f let `(f) be the length, i.e., the number of leaves of
f . The length `(R) of a regular expression R is the number of symbols from the alphabet Σ appearing
in R. The rpn-length of a regular expression R is the number of symbols from Σ ∪ {+, ◦,∗ , ε, ∅}
appearing in R, when R is written in reverse Polish notation.

Naor and Reingold [11] show that NC1 contains a strong pseudo-random ensemble for some pa-
rameter ε > 0, provided factoring Blum integers is sufficiently hard. More precisely there is some
constant c and a hard pseudo-random ensemble C1 with formula depth at most c·logm for functions
in C1 ∩ Bm. Thus all functions in C1 ∩ Bm have formula length at most T1(m) = mc.

We define the functional G(1) by setting G
(1)
m (fm) to equal the minimum length of a regular

expression for the complement of LT1(fm) = {xT1 |fm(x) = 1}.
We associate regular expressions with formulae and show that the length of the regular expres-

sion is exponentially related to the depth of the formula.

Definition 5. Let f be a formula for a function f : {0, 1}m → {0, 1}. We define the regular
expression R(f) recursively as follows:

– If f = xi, then R(f) := (0 + 1)i−1 1 (0 + 1)m−i.
– If f = xi, then R(f) := (0 + 1)i−1 0 (0 + 1)m−i.
– If f = f1 ∧ f2, then R(f) := R(f1) ◦R(f2).
– If f = f1 ∨ f2, then R(f) := R(f1) ◦ (0 + 1)m·`(f2) + (0 + 1)m·`(f1) ◦R(f2).

Lemma 2. Let W = {w|∃x ∈ {0, 1}m ∧w ∈ {x}∗} be the language of repeated inputs of length m.
(a) L(R(f)) ∩W = {x`(f)|f(x) = 1} = L`(f)(f).

(b) For a given formula f of depth k there is a regular expression Rf which describes the
complement of L(R(f)) ∩W . Rf has length O(4km) and can be constructed in time poly(4km).

(c) In particular, LT1(fm) has regular expressions of length t
(1)
1 = O(m2c+1) for any fm ∈

C1 ∩ Bm.

Proof. (a) can be shown by an induction on the structure of formula f .
(b) Moreover, such an induction shows that for a given formula f of depth k the regular

expression R(f) has length at most 2 · 4km and can be constructed in time poly(4km). Observe
that L(R(f)) ∩W = L(R(f))∪W . We check whether the input does not consist of repetitions with
the regular expression

(
(0 + 1)∗ 1 (0 + 1)m−1 0 (0 + 1)∗

)
+

(
(0 + 1)∗ 0 (0 + 1)m−1 1 (0 + 1)∗

)

and cover words of wrong length by (0+1+ ε)m·`(f)−1 + (0+1)m·`(f)+1(0+1)∗. We negate f with
DeMorgan and observe that depth does not increase.

(c) Since all functions in C1 ∩Bm have formula depth at most c · log m, we may assume that all
these functions have formulae of depth exactly c · log m and length exactly T1(m) = mc. Thus with
part (a) LT1(fm) coincides with L(R(f)) ∩W and, with part (b), LT1(fm) has regular expressions
of length O(4c log mm) = O(m2c+1). ut

Thus we know that (strong pseudo-random) functions of formula depth at most c · log m have
short regular expressions of length at most t1(m) = poly(m), whereas we show next that most
m-bit functions have only regular expressions of length at least Ω(2m).

Lemma 3. The number of languages described by regular expressions of length at most t
(1)
2 (m) =

2m

40 is bounded by
√

22m = o(|Bm|).

Proof. A regular expression of length at most t has rpn-length at most 6t [5]. At any position in
the regular expression in reverse Polish notation there may be one of the seven distinct symbols
0, 1, +, ◦,∗ , ε, ∅. Thus we can have at most

∑

j≤6t 7j ≤ 77t ≤ 220t distinct regular expressions of

rpn-length at most 6t. The claim follows, since 220t2(m) = 220 2m

40 = 22m−1

. ut



G
(1)
m (km(fn)) ≤ t

(1)
1 (n) holds for functions fn ∈ C1 ∩ Bn, because a formula for fn can be

transformed into a formula for km(fn) of same depth. Hence as a consequence of Lemma 2 and

Lemma 3, G(1) separates C1 from random functions with thresholds t
(1)
1 (m) = O(m2c+1) and

t
(1)
2 (m) = 2m

40 .
Thus we may apply the generic Lemma 1 and obtain that efficient algorithms approximating

the length of a shortest regular expression for LT1(f) do not exist. However we have to specify the
input not by a truth table but by a dfa.

Proposition 1. Let f ∈ Bm and let T be some function of m, then there is a dfa DT (f) with
O(2m · T ) states that accepts LT (f).

Proof. The dfa DT (f) consists of a binary tree of depth m rooted at the initial state. A leaf that
corresponds to a word x with f(x) = 0 gets a self loop, a leaf that corresponds to a word x with
f(x) = 1 is starting point of a path of length (T − 1)m that can only be followed by inputs with
T − 1 repetitions of x. Each such path leads to a rejecting state and any wrong letter on this
path, resp. any word longer than (T −1)m (measured on the path only) leads to an accepting trap
state. Each state is accepting, except for those already described as rejecting. The dfa DT (f) has
O(2m · T ) states. ut

Thus our first main result is now an immediate consequence of Lemma 1.

Theorem 1. Suppose that strong pseudo-random functions with parameter ε and formula depth
bounded by c · log m exist for some c.

Let App be a randomized approximation algorithm that approximately determines the length of
a shortest equivalent regular expression, when given a dfa with k states. Then for all l ≥ 1, if App

runs in time 2O((log k)l) with ε+ + ε− < 2
3 , then App can only achieve an approximation factor

µ ≥ k
poly((log k)l/ε)

.

The argument shows that there are always dfa’s with optimal nfa’s of size poly(log k), such
that an “efficient” approximation algorithm can only determine nfa’s of size k

poly(log k) . Thus the

original question of Jiang and Ravikumar [7] phrased for regular expressions instead of nfa’s,
namely whether it is possible to approximate within a polynomial, has a negative answer modulo
cryptographic assumptions.

2.2 NFA’s and Two-Way Automata of Polynomial Size

Here we use the functionals G(2) and G(3) defined by G
(2)
m (fm), resp. G

(3)
m (fm), to equal the

minimum number of states, resp. transitions, of an nfa recognizing LT1(fm). We choose T1 as

defined in the previous section and define t
(2)
1 = t

(1)
1 , t

(3)
1 =

(

t
(1)
1

)2

. We observe that the number

of states of a minimum nfa is not larger than the length ` of an equivalent regular expression and
the number of transitions is at most quadratic in `. Thus all functions in C1 have nfa’s of “size” at

most t
(2)
1 , resp. t

(3)
1 . Moreover all but a negligible fraction of languages require nfa’s with at least

t
(2)
2 (m) = 2

m
2 −1 states, resp. t

(3)
2 (m) = 2m

20m transitions.

Lemma 4. (a) The number of languages accepted by nfa’s with at most t
(2)
2 (m) = 2

m
2 −1 states is

bounded by
√

2m+2m = o(|Bm|).
(b) The number of languages accepted by nfa’s with at most t

(3)
2 (m) = 2m

20m transitions is bounded

by
√

22m = o(|Bm|).

Proof. (a) Let N(k) be the number of distinct languages accepted by nfa’s with at most k states

over a two-letter alphabet. Then N(k) ≤ 2k ·22·k2

[2] and hence N(t
(2)
2 (m)) ≤ 2

2 ·2
m
2 ·22·

(
2

m
2 /2

)2

=

2
m
2 · 2 2

4 ·(2
(m/2))2

= 2
m
2 · 2 2m

2 =
√

2m+2m .
(b) We show that there are at most M(k) = k10k languages accepted by nfa’s with at most k

transitions over a two-letter alphabet. This establishes the claim, if we set t
(3)
2 (m) = 2m

20m , since

M(t
(3)
2 (m)) =

(
2m

20m

)10 2m

20m ≤ 210m· 2m

20m =
√

22m .



For any nfa N with s states and k transitions there is an equivalent nfa N ′ with s + 1 states,
at most 2k transitions and exactly one final state. Just add a final state f , make every other state
non-final and for every transition in N that leads to a final state in N , add a transition to f and
keep every other transition.

There are at most
(
(s+1)2

2k

)2
· s2 ≤ s8k+2 distinct languages over {0, 1} accepted by nfa’s with

s states and k transitions, since this is an upper bound for the number of possibilities to place 2k

transitions for each letter of the alphabet {0, 1} and the number of choices for the initial and the
final state.

We can assume that the number of states is bounded by the number of transitions and hence
we have at most k8k+2 ≤ k10k distinct languages. ut

We apply Lemma 1 again and obtain:

Corollary 1. Suppose that strong pseudo-random functions with parameter ε and formula depth
bounded by c · log m exist for some c.

Let App be a randomized approximation algorithm that approximately determines the number of
states (resp. number of transitions) of a minimum equivalent nfa, when given a dfa with k states.

Then for all l ≥ 1, if App runs in time 2O((log k)l) with ε+ + ε− < 2
3 , then App can only achieve

an approximation factor µ ≥
√

k
poly((log k)l/ε)

(resp. µ ≥ k
poly((log k)l/ε)

).

We finally mention that the assumption of strong pseudo-random functions with small formula
depth can be replaced by the weaker assumption of strong pseudo-random functions with two-way
dfa’s of polynomial size. (Observe that two-way dfa’s of polynomial size have the power of non-
uniform Logspace, which is at least as powerful as non-uniform NC1.) We show that two-way dfa’s
can be simulated efficiently by nfa’s after repeating the input suitably often.

Lemma 5. Let m, k ∈ IN and let Am be a two-way deterministic finite automaton with at most
mk states. Then there is a polynomial T (m) and an nfa Nm with O(T (m)) states that accepts the
complement of

LT (Am) := {xT (m) | x ∈ {0, 1}m ∧ Am accepts x }.

Proof. Obviously Am runs for at most T (m) = m ·mk steps, since no cell can be visited twice in
the same state. As shown in [13], Am on input x ∈ {0, 1}m can be simulated by a dfa Dm with
T (m) states working on input xT (m). The nfa Nm decides nondeterministically to run Dm (with
final and non-final states interchanged) or to check whether the input is syntactically incorrect,
i.e., verifying inequality or incorrect length. Nm has t1(m) = poly(m) states, resp. transitions. ut

When applying Lemma 1, we have to first redefine the number of repetitions to make sure
that a class C2 of pseudo-random functions can be recognized by two-way dfa’s of size mk. We
therefore set T2(m) = mk+1 and are guaranteed to find an equivalent nfa recognizing LT2(fm) (for

fm ∈ C2 ∩ Bm) with t
(2)
1 (m) = t

(3)
1 (m) = O(T2(m)) states, resp. transitions.

2.3 The Minimum Consistent DFA Problem

In the minimum consistent dfa problem, sets POS, NEG ⊆ {0, 1}∗ with POS∩NEG = ∅ are given.
The goal is to determine the minimum size of a dfa D such that POS ⊆ L(D) and NEG∩L(D) = ∅.

We again work with T2(m) repetitions and define G
(4)
m (fm) as the minimum size of a dfa

accepting POS = {xT2 |fm(x) = 1} and rejecting NEG = {xT2 |fm(x) = 0}. Observe that for any

function fm∈ C2∩Bm we have G
(4)
m (fm) ≤ t

(4)
1 (m) := mk+1, since any two-way dfa with mk states

can be simulated by a dfa with mk+1 states, if the input x ∈ {0, 1}m is repeated T2(m) = mk+1

times. (See the proof of Lemma 5).

Lemma 6. G
(4)
m (fm) ≤ t

(4)
2 (m) = 2m

6m holds for at most
√

22m = o(|Bm|) functions in Bm.

Proof. Let K(s) be the number of distinct languages accepted by dfa’s with at most s states over

a two-letter alphabet. Then K(s) ≤ s3s [2] and hence K(t
(4)
2 (m)) ≤

(
2m

6m

)3 2m

6m ≤ 23m 2m

6m =
√

22m .
The claim holds, since different functions fm have different consistent dfa’s. ut



Thus G
(4)
m separates C2 from random functions with thresholds t

(4)
1 , t

(4)
2 and we obtain the

following Theorem.

Theorem 2. Suppose that strong pseudo-random functions with parameter ε and two-way dfa’s
with at most mk states exist for some k.

Let App be a randomized approximation algorithm that approximately determines the number
of states of a minimum consistent dfa. For input length N =

∑

x∈POS∪NEG |x| and for all l ≥ 1,

if App runs in time 2O((log N)l) with ε+ + ε− < 2
3 , then App can only achieve an approximation

factor µ ≥ N
poly((log N)l/ε)

.

Efficient approximation algorithms determine, for d ≤ N examples, consistent dfa’s of size N
poly(log N) ,

whereas optimal dfa’s have size opt = poly(log N). Thus upper bounds have as many as 2opt
1
l · dβ

states, where β < 1 and l is sufficiently large. This result is stronger than the result of at least
optα · dβ due to Kearns and Valiant [8]. The stronger result is a consequence of our use of pseudo-
random functions instead of one-way functions. (See also Naor and Reingold [11].)

3 Minimizing NFA’s or Regular Expressions

We now assume that the language is specified concisely, i.e., as an nfa or a regular expression and
prove in this scenario strong inapproximability results. We begin by investigating unary languages,
i.e., languages over a one-letter alphabet, and show that no significant approximation is achievable,
provided P 6= NP . This statement holds for size interpreted as number of states, transitions, resp.
symbols.

Efficient approximations for state minimization within the factor
√

m
ln m are known not to exist,

if P 6= NP [3]. This result remains true for the number of transitions (resp. number of symbols in
regular expressions), since the nfa (resp. regular expression) built by the transformation in the proof
[3, 15] has as many states as transitions (resp. symbols), and the number of states is a lower bound
for the number of transitions of a minimal equivalent nfa (resp. symbols of a minimal equivalent
regular expression). We can improve the inapproximability result, if we require the construction of
a small nfa or regular expression.

Theorem 3. Let A be an arbitrary unary nfa or regular expression of size m. Let opt be the size
of a minimal equivalent nfa, resp. regular expression. For any δ > 0, if P 6= NP , then no efficient
algorithm can determine an nfa or regular expression A′ equivalent to A with size at most opt·m1−δ.

Proof. Let A be an nfa (regular expression) constructed in the NP-completeness proof [3, 15]. A

has the property that either opt = 1 or opt >
√

m
lnm and it is NP-complete to distinguish the two

cases.
Suppose that there is a constant δ > 0 and an efficient algorithm M that computes an nfa

(regular expression) M(A) equivalent to A with size(M(A)) ≤ opt · size(A)1−δ . If we apply M

on its output again, then size(M(M(A))) ≤ opt · size(M(A))1−δ ≤ opt2 · size(A)(1−δ)2 . If we

repeat this process k times, then size(Mk(A)) ≤ optk · size(A)(1−δ)k

. So for k ≥ −2
log(1−δ) , we have

size(Mk(A)) ≤ optk · size(A)
1
4 , hence for m large enough, size(Mk(A)) ≤

√
m

ln m if opt = 1 and

size(Mk(A)) ≥ opt >
√

m
ln m otherwise. ut

Our negative results for general alphabets are based on the well known proof [10] of the
PSPACE-completeness of “regular expression non-universality”: Given a regular expression R,
is L(R) 6= Σ∗? The PSPACE-completeness of regular expression non-universality implies the
PSPACE-completeness of the exact minimization of nfa’s and regular expressions.

The proof of [10] shows, that for an arbitrary language L ∈ PSPACE there is a (generic)
polynomial time transformation T such that w ∈ L ⇔ L(T (w)) 6= Σ∗, where L(T (w)) is the
language described by the nfa, resp. regular expression T (w). We restrict ourselves to languages
L ∈ L where L is the class of languages that can be accepted by deterministic in-place Turing
machines1. Our inapproximability result utilizes the following observation.

1 L coincides with DSPACE(O(n)), but considering only Turing machines that work in-place simplifies
the proof.



Lemma 7. For any given language L ∈ L there is a deterministic in-place Turing machine ML

recognizing L with a single accepting state. ML runs for at least 2n steps on every input w ∈ L of
length n.

Proof. Let M be some deterministic in-place Turing machine which accepts L and has only one
accepting state qf . We construct a Turing machine ML that has all the states and transitions M

has. However, whenever ML enters qf , it counts in binary from 0n to 1n, changes to a new state
q′f , when reaching 1n, and stops. q′f is the only state in which ML accepts and q′f causes ML to
stop. ut

Assume that M is a Turing machine with the properties stated in Lemma 7 which recognizes
the PSPACE-complete language L(M). (A padding argument shows that L contains PSPACE-
complete languages.) We reduce the word problem for L(M) to the minimization problem for
nfa’s. In particular for an input w of M , we construct an nfa Aw, which accepts exactly all words
which are not concatenations of consecutive legal configurations starting from configuration q0w

leading to the unique accepting state. The exact description of the construction of Aw is omitted.
It shows that Aw has m = O(|w|) states.

If M rejects w, then L(Aw) coincides with Σ∗. However, if M accepts w, then the configuration
sequence x corresponding to the accepting computation is rejected by Aw and it is the only rejected
word.

We show that Σ∗ \ {x} requires nfa’s with at least |w| states. Any accepting computation
has length at least 2|w|, since M is a Turing-Machine as described in Lemma 7. Every dfa which
excludes a single word of length at least 2|w| needs at least 2|w| states, thus every equivalent nfa
needs at least |w| states. Hence, if L(Aw) = Σ∗ \ {x} for some x with |x| ≥ 2|w|, then every nfa
which accepts L(Aw) needs at least |w| states.

Thus, if w 6∈ L(M), then L(Aw) can be recognized by an nfa with one state, whereas for
w ∈ L(M), nfa’s with at least |w| states are required. Since Aw has m = O(|w|) states, we have
found the desired gap.

The inapproximability result for the number of transitions of nfa’s and the number of symbols
in regular expressions follows along the same lines.

Theorem 4. Unless P = PSPACE, it is impossible to efficiently approximate the size of a minimal
nfa or regular expression describing L(A) within an approximation factor of o(m) when given an
nfa or a regular expression A with m states, transitions or symbols respectively.

Standard encoding arguments show that this PSPACE-completeness result is true for regular
expressions or nfa’s over any alphabet Σ with |Σ| ≥ 2.

4 Conclusions and an Overview

We have been able to verify inapproximability of nfa’s or regular expressions either for given nfa’s
or regular expressions (utilizing P 6= NP , resp. P 6= PSPACE) or for given dfa’s (assuming the
existence of strong pseudo-random functions in NC1, resp. Logspace).

The most notably open problem is a negative result for given dfa’s utilizing only P 6= NP . Fur-
thermore, what is the approximation complexity, when specifying a regular language L ⊆ {0, 1}n

by a truth table? Below we list our results and additionally mention nfa minimization for a given
unary dfa as a third important open problem.

NFA Minimization

Instance: An nfa N with k states over a binary alphabet.
Solution: The size of a smallest nfa equivalent with N .
Measure: Number of transitions or number of states.

Bad News: Not approximable within o(k).
Assumption: P 6= PSPACE.
Reference: Theorem 4



Regular Expression Minimization

Instance: A regular expression R with k symbols over a binary alphabet.
Solution: The size of a smallest regular expression equivalent with R.
Measure: Number of symbols.

Bad News: Not approximable within o(k).
Assumption: P 6= PSPACE.
Reference: Theorem 4

The same is true for nfa → regular expression minimization and vice versa.
Unary NFA Minimization

Instance: An nfa N with k states over a unary alphabet.
Solution: The size of a smallest nfa equivalent with N .
Measure: Number of transitions or number of states.

Bad News: Not approximable within
√

k
ln k .

Assumption: P 6= NP .
Reference: [3]

Constructive Unary NFA Minimization

Instance: An nfa N with k states over a unary alphabet.
Solution: A smallest nfa equivalent with N .
Measure: Number of transitions or number of states.

Bad News: Not approximable within k1−δ for any δ.
Assumption: P 6= NP .
Reference: Theorem 3

DFA → NFA Minimization (States)

Instance: A dfa D with k states over a binary alphabet.
Solution: The size of a smallest nfa equivalent with D.
Measure: Number of states.

Bad News: Not approximable within
√

k
poly(log k) .

Assumption: Strong pseudo-random functions in Logspace.
Reference: Corollary 1

DFA → NFA Minimization (Transitions)

Instance: A dfa D with k states over a binary alphabet.
Solution: The size of a smallest nfa equivalent with D.
Measure: Number of transitions.

Bad News: Not approximable within k
poly(log k) .

Assumption: Strong pseudo-random functions in Logspace.
Reference: Corollary 1

Unary DFA → NFA Minimization

Instance: A dfa D with k states over a unary alphabet.
Solution: The size of a smallest nfa equivalent with D.
Measure: Number of states or transitions.

Bad News: Optimal solution cannot be determined efficiently.

Assumption: NP 6⊆ DTIME(nO(log n))
Good News: Cyclic case can be approximated within 1 + ln k.
Reference: [6], [3]



DFA → Regular Expression Minimization

Instance: A dfa D with k states over a binary alphabet.
Solution: The size of a smallest regular expression equivalent with D.
Measure: Number of symbols.

Bad News: Not approximable within
k

poly(log k) .

Assumption: Strong pseudo-random functions in NC1.
Reference: Theorem 1

Minimum Consistent DFA

Instance: Two finite sets P, N of binary strings.
Solution: The minimal size of a dfa accepting all strings in P and rejecting all strings in N .
Measure: Number of states in the automaton.

Bad News: Not approximable within |P |+|N |
poly(log(|P |+|N |)) .

Assumption: Strong pseudo-random functions in Logspace.
Reference: Theorem 2

References

1. Champarnaud, J.-M., Coulon, F.: NFA Reduction Algorithms by Means of Regular Inequalities, De-
velopments in Language Theory, Springer, LNCS 2710, pp. 194-205.

2. Domaratzki, M., Kisman, D. Shallit, J.: On the Number of Distinct Languages Accepted by Finite
Automata with n States, Journal of Automata, Languages and Combinatorics, 7(4), 2002.

3. Gramlich, G.: Probabilistic and Nondeterministic Unary Automata, Proc. of Math. Foundations of
Computer Science, Springer, LNCS 2747, 2003, pp. 460-469.

4. Ilie, L., Navarro, G., Yu, S.: On NFA reductions, in J. Karhumaki, H. Maurer, G. Paun, G. Rozenberg,
eds., Theory is Forever (Salomaa Festschrift), Springer, LNCS 3113, 2004, pp. 112-124.

5. Ilie, L., Yu, S.: Follow automata, Informat. & Computation 186, 2003, pp. 140-162.
6. Jiang, T., McDowell, E., Ravikumar, B.: The structure and complexity of minimal NFA’s over a unary

alphabet, Int. J. Found. of Comp. Sci., 2, 1991, pp. 163-182.
7. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard, SIAM Journal on Computing, 22(1), 1993,

pp. 1117-1141.
8. Kearns, M., Valiant, L. G.: Cryptographic Limitations on Learning Boolean Formulae and Finite

Automata, Journal of the ACM, 41(1), 1994, pp. 67-95.
9. Matz, O., Potthoff, A.: Computing small nondeterministic finite automata, Proc. of the Workshop on

Tools and Algorithms for the Construction and Analysis of Systems, Dpt. of CS., Univ. of Aarhus
1995, pp. 74-88.

10. Meyer, A. R., Stockmeyer, L. J.: The Equivalence Problem for Regular Expressions with Squaring
Requires Exponential Space, Proc. 13th Ann. IEEE Symp. on Switching and Automata Theory, 1972,
pp. 125-129.

11. Naor, M., Reingold, O.: Number-Theoretic constructions of efficient pseudo-random functions, Journal
of the ACM, 51(2), 2004, pp. 231-262.

12. Pitt, L., Warmuth, M. K.: The Minimum Consistent DFA Problem Cannot be Approximated within
any Polynomial, Journ. of the ACM, 1993, 40, pp. 95-142.

13. Pitt, L., Warmuth, M. K.: Prediction-Preserving Reducibility, Journal of Computer and System Sci-
ence, 41(3), 1990, pp. 430-467.

14. Razborov, A. A., Rudich, S.: Natural Proofs, Journal of Computer and Systems Sciences, 55, 1997,
pp. 24-35.

15. Stockmeyer, L., Meyer, A.: Word Problems Requiring Exponential Time, Proc. of the 5th Annual
ACM Symposium on Theory of Computing, 1973, pp. 1-9.



A Appendix

Proof (of Lemma 2). Obviously L(R(f)) ⊆ {0, 1}m·`(f). We prove the lemma by induction on the
depth of f . If f = xi, then R(f) = (0 + 1)i−1 1 (0 + 1)m−i and thus

L(R(f)) ∩W = {x|x ∈ {0, 1}m ∧ xi = 1} = {x|f(x) = 1}.
The case f = xi follows analogously. If f = f1 ∧ f2, then R(f) = R(f1) ◦R(f2) and thus

L(R(f)) ∩W = (L(R(f1)) ◦ L(R(f2))) ∩W

= ((L(R(f1)) ∩W ) ◦ (L(R(f2)) ∩W )) ∩W

=
(

{x`(f1)|f1(x) = 1} ◦ {x`(f2)|f2(x) = 1}
)

∩W

= {x`(f1)+`(f2)|f1(x) = 1 ∧ f2(x) = 1}
= {x`(f)|f(x) = 1}.

If f = f1 ∨ f2, then R(f) = R(f1) ◦ (0 + 1)m·`(f2) + (0 + 1)m·`(f1) ◦R(f2) and thus

L(R(f)) ∩W = (L(R(f1)) ◦ {0, 1}m·`(f2) ∪ {0, 1}m·`(f1) ◦ L(R(f2))) ∩W

= ((L(R(f1)) ◦ {0, 1}m·`(f2)) ∩W ) ∪ (({0, 1}m·`(f1) ◦ L(R(f2))) ∩W )

= {x`(f1)+`(f2)|f1(x) = 1} ∪ {x`(f1)+`(f2)|f2(x) = 1}
= {x`(f1)+`(f2)|f1(x) = 1 ∨ f2(x) = 1}
= {x`(f)|f(x) = 1}.

Let `(k) be the length of R(f) for a formula f with depth k. We show recursively that `(k) ≤
2 · 4km. For k = 0 we have `(0) ≤ 2m = 2 · 4km. For formulae f1 and f2 of depth at most k the
regular expression R(f1 ∧ f2) has length at most 2`(k) ≤ 2 · 2 · 4km = 4k+1m, and the regular
expression R(f1 ∨ f2) has length at most 2`(k) + 2m ≤ 2 · 2 · 4km + 2m ≤ 2 · 4k+1m.

We are done, since the explicit recursive construction in Definition 5 can be carried out in
polynomial time. ut
Proof (of Theorem 4). We give a complete proof of Theorem 4 and refer to the proof sketch in
section 3 for motivating comments.

We start with an in-place Turing machine M = (QM , ΣM , ΓM , δ, q0, {qf}) as described in
Lemma 7.

We require L(M) to be PSPACE-complete. For a given word w we have to determine whether

w
?∈ L(M). Our transformation constructs an nfa Aw which accepts exactly those words x which

are not legal sequences of configurations of M on input w ending with the unique accepting state
qf .

Aw uses the alphabet Σ = (QM × ΓM ) ∪ ΓM ∪ {#} to describe sequences of configurations of
M separated by the new symbol #. Every legal configuration has length exactly |w| and is a word
in Γ ∗

M · (QM × ΓM ) · Γ ∗
M . The symbols [q, a] ∈ QM × ΓM represent the head position of M on a

cell with contents a while M is in state q.
We can easily construct Aw, if we allow multiple initial states. Thus L(Aw) is the union of

the languages accepted by the automata described below. (It is an easy exercise to transform an
autmaton with multiple initial states into an automaton with a unique initial state by at most
doubling the number of transitions.)

(i) Accept every word x which does not start with #[q0, w1]w2 . . . wn#.

wn−1 wn
· · ·

# [q0, w1] w3

# [q0, w1] w2 w3 wn−1 wn #

Σ

w2



Here Σ means any symbol in Σ and a means any symbol in Σ\{a}. Observe that the automaton
rejects only if # is read in the rightmost state.

(ii) Accept every word x which does not contain [qf , γ] for any γ ∈ ΓM .

[qf , ·]

Read [qf , ·] as any symbol in Σ \ ({qf} × ΓM ).
(iii) Accept every word x which does not end with #.

#

#

Σ

(iv) In a legal sequence y of configurations, for every triple yi−1yiyi+1 ∈ Σ3 of consecutive letters,
the new middle symbol yi+n+1 is a function of yi−1yiyi+1. Thus for any illegal sequence x of
configurations there is a position i with yi+n+1 6= yi, if the head is not scanning yi, or yi+n+1

is not updated correctly.
In particular, for each a1, a2, a3 ∈ ΓM ∪ {#} accept every word x which does not have a2 at
the corresponding middle position in the next configuration.

a2
Σ

· · ·

a1 a2

Σ

a3 Σ Σ

︸ ︷︷ ︸

n−1

Finally, for each a1, a2 ∈ ΓM and each [q, a] ∈ QM × ΓM with δ(q, a) = (q′, b,→) for some
q′ ∈ QM and some b ∈ ΓM accept wrong sequences:

[q, a] a1 a2 [q′, a1]

Σ

Σ Σ
· · ·

︸ ︷︷ ︸

n−1

Σ

a1 [q, a] a2 b

Σ

Σ Σ
· · ·

︸ ︷︷ ︸

n−1

Σ

a1 a2 [q, a] a2

Σ

Σ Σ
· · ·

︸ ︷︷ ︸

n−1

Σ

Treat those [q, a] ∈ QM × ΓM with δ(q, a) = (q′, b,←) accordingly.

The nfa Aw has m ≤ |w| · 2 · |Σ|3 states which is a constant multiple of n = |w|.
Observe that w belongs to L(M) iff there is exactly one accepting computation x of M on

w which is not accepted by Aw. (Remember, that M is deterministic.) Hence, if w 6∈ L, then
L(Aw) = Σ∗ and the minimal equivalent nfa or regular expression has size 1. Moreover, if w ∈ L,
then L(Aw) = Σ∗ \ {x} for some x which represents the accepting computation.

It suffices to show that Σ∗\{x} requires nfa’s with at least n states. Any accepting computation
has length at least 2n, since M is a Turing-Machine as described in Lemma 7. Every dfa which
excludes a single word of length 2n needs at least 2n states, thus every equivalent nfa needs at
least n states. Hence, if M accepts w and thus L(Aw) = Σ∗ \ {x} for some x with |x| ≥ 2n, then
every nfa which accepts L(Aw) needs at least n = |w| states.

Since determining whether w belongs to M is a PSPACE-complete problem, an approximation
algorithm with an approximation factor of o(m) solves a PSPACE-complete problem.

The inapproximability result for the number of transitions of nfa’s and the number of symbols
in regular expressions follows along the same lines. ut


